IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v22y2017i4d10.1007_s13253-017-0305-6.html
   My bibliography  Save this article

Analysis of Multiple Binary Responses Using a Threshold Model

Author

Listed:
  • Ling-Yun Chang

    (University of Georgia)

  • Sajjad Toghiani

    (University of Georgia)

  • Ashley Ling

    (University of Georgia)

  • El H. Hay

    (USDA-ARS)

  • Sammy E. Aggrey

    (University of Georgia
    University of Georgia)

  • Romdhane Rekaya

    (University of Georgia
    University of Georgia)

Abstract

Several discrete responses, such as health status, reproduction performance and meat quality, are routinely collected for several livestock species. These traits are often of binary or discrete nature. Genetic evaluation for these traits is frequently conducted using a single-trait threshold model, or they are considered continuous responses either in univariate or in multivariate context. Implementation of threshold models in the presence of several binary responses or a mixture of binary and continuous responses is far from simple. The complexity of such implementation is primarily due to the incomplete randomness of the residual (co)variance matrix. In the current study, a multiple binary trait simulation was carried out in order to implement and validate a new procedure for dealing with the consequences of the restrictions imposed to the residual variance using threshold models. Using three and eight binary responses, the proposed method was able to estimate all unknown parameters without any noticeable bias. In fact, for simulated residual correlations ranging from −0.8 to 0.8, the resulting HPD 95% intervals included the true values in all cases. The proposed procedure involved limited additional computational cost and is straightforward to implement independent of the number of binary responses involved in the analysis. Monitoring of the convergence of the procedure must be conducted at the identifiable scale, and special care must be placed on the selection of the prior of the non-identifiable model. The latter could have serious consequences on the final results due to potential truncation of the parameter space.

Suggested Citation

  • Ling-Yun Chang & Sajjad Toghiani & Ashley Ling & El H. Hay & Sammy E. Aggrey & Romdhane Rekaya, 2017. "Analysis of Multiple Binary Responses Using a Threshold Model," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(4), pages 640-651, December.
  • Handle: RePEc:spr:jagbes:v:22:y:2017:i:4:d:10.1007_s13253-017-0305-6
    DOI: 10.1007/s13253-017-0305-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-017-0305-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-017-0305-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McCulloch, Robert E. & Polson, Nicholas G. & Rossi, Peter E., 2000. "A Bayesian analysis of the multinomial probit model with fully identified parameters," Journal of Econometrics, Elsevier, vol. 99(1), pages 173-193, November.
    2. McCulloch, Robert & Rossi, Peter E., 1994. "An exact likelihood analysis of the multinomial probit model," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 207-240.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    2. Rub'en Loaiza-Maya & Didier Nibbering, 2022. "Fast variational Bayes methods for multinomial probit models," Papers 2202.12495, arXiv.org, revised Oct 2022.
    3. Robert Zeithammer & Peter Lenk, 2006. "Bayesian estimation of multivariate-normal models when dimensions are absent," Quantitative Marketing and Economics (QME), Springer, vol. 4(3), pages 241-265, September.
    4. Dennis Fok & Richard Paap & Philip Hans Franses, 2014. "Incorporating Responsiveness to Marketing Efforts in Brand Choice Modeling," Econometrics, MDPI, vol. 2(1), pages 1-25, February.
    5. John Geweke & Joel Horowitz & M. Hashem Pesaran, 2006. "Econometrics: A Bird’s Eye View," CESifo Working Paper Series 1870, CESifo.
    6. Zhang, Xiao & Boscardin, W. John & Belin, Thomas R., 2008. "Bayesian analysis of multivariate nominal measures using multivariate multinomial probit models," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3697-3708, March.
    7. Zhang, Rong & Inder, Brett A. & Zhang, Xibin, 2015. "Bayesian estimation of a discrete response model with double rules of sample selection," Computational Statistics & Data Analysis, Elsevier, vol. 86(C), pages 81-96.
    8. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    9. Susan Athey & Guido W. Imbens, 2007. "Discrete Choice Models With Multiple Unobserved Choice Characteristics," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1159-1192, November.
    10. Gary Koop, 2004. "Modelling the evolution of distributions: an application to Major League baseball," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 167(4), pages 639-655, November.
    11. Doug J. Chung & Kyoungwon Seo & Reo Song, 2023. "Efficient computation of discrete games: Estimating the effect of Apple on market structure," Production and Operations Management, Production and Operations Management Society, vol. 32(7), pages 2245-2263, July.
    12. Kim Jin Gyo & Menzefricke Ulrich & Feinberg Fred M., 2004. "Assessing Heterogeneity in Discrete Choice Models Using a Dirichlet Process Prior," Review of Marketing Science, De Gruyter, vol. 2(1), pages 1-41, January.
    13. Raja Chakir & Olivier Parent, 2009. "Determinants of land use changes: A spatial multinomial probit approach," Papers in Regional Science, Wiley Blackwell, vol. 88(2), pages 327-344, June.
    14. Maksym, Obrizan, 2010. "A Bayesian Model of Sample Selection with a Discrete Outcome Variable," MPRA Paper 28577, University Library of Munich, Germany.
    15. Moffa, Giusi & Kuipers, Jack, 2014. "Sequential Monte Carlo EM for multivariate probit models," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 252-272.
    16. Ricardo A. Daziano & Martin Achtnicht, 2014. "Forecasting Adoption of Ultra-Low-Emission Vehicles Using Bayes Estimates of a Multinomial Probit Model and the GHK Simulator," Transportation Science, INFORMS, vol. 48(4), pages 671-683, November.
    17. Chiew, Esther & Daziano, Ricardo A., 2016. "A Bayes multinomial probit model for random consumer-surplus maximization," Journal of choice modelling, Elsevier, vol. 21(C), pages 56-59.
    18. Daziano, Ricardo A. & Achtnicht, Martin, 2014. "Accounting for uncertainty in willingness to pay for environmental benefits," Energy Economics, Elsevier, vol. 44(C), pages 166-177.
    19. Peter E. Rossi & Greg M. Allenby, 2003. "Bayesian Statistics and Marketing," Marketing Science, INFORMS, vol. 22(3), pages 304-328, July.
    20. Paap, Richard & van Nierop, Erjen & van Heerde, Harald J. & Wedel, Michel & Franses, Philip Hans & Alsem, Karel Jan, 2005. "Consideration sets, intentions and the inclusion of "don't know" in a two-stage model for voter choice," International Journal of Forecasting, Elsevier, vol. 21(1), pages 53-71.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:22:y:2017:i:4:d:10.1007_s13253-017-0305-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.