Prescriptive analytics systems revised: a systematic literature review from an information systems perspective
Author
Abstract
Suggested Citation
DOI: 10.1007/s10257-024-00688-w
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Sarel Lavy & John A. Garcia & Phil Scinto & Manish K. Dixit, 2014. "Key performance indicators for facility performance assessment: simulation of core indicators," Construction Management and Economics, Taylor & Francis Journals, vol. 32(12), pages 1183-1204, December.
- Delen, Dursun & Zolbanin, Hamed M., 2018. "The analytics paradigm in business research," Journal of Business Research, Elsevier, vol. 90(C), pages 186-195.
- Grigorios D. Konstantakopoulos & Sotiris P. Gayialis & Evripidis P. Kechagias, 2022. "Vehicle routing problem and related algorithms for logistics distribution: a literature review and classification," Operational Research, Springer, vol. 22(3), pages 2033-2062, July.
- Nikolai Stein & Jan Meller & Christoph M. Flath, 2018. "Big data on the shop-floor: sensor-based decision-support for manual processes," Journal of Business Economics, Springer, vol. 88(5), pages 593-616, July.
- Ilias O. Pappas & Patrick Mikalef & Michail N. Giannakos & John Krogstie & George Lekakos, 2018. "Big data and business analytics ecosystems: paving the way towards digital transformation and sustainable societies," Information Systems and e-Business Management, Springer, vol. 16(3), pages 479-491, August.
- Andrew Burton-Jones & Olga Volkoff, 2017. "How Can We Develop Contextualized Theories of Effective Use? A Demonstration in the Context of Community-Care Electronic Health Records," Information Systems Research, INFORMS, vol. 28(3), pages 468-489, September.
- Anna Trunk & Hendrik Birkel & Evi Hartmann, 2020. "On the current state of combining human and artificial intelligence for strategic organizational decision making," Business Research, Springer;German Academic Association for Business Research, vol. 13(3), pages 875-919, November.
- Hauser, Matthias & Flath, Christoph M. & Thiesse, Frédéric, 2021. "Catch me if you scan: Data-driven prescriptive modeling for smart store environments," European Journal of Operational Research, Elsevier, vol. 294(3), pages 860-873.
- Wanda J. Orlikowski & C. Suzanne Iacono, 2001. "Research Commentary: Desperately Seeking the “IT” in IT Research—A Call to Theorizing the IT Artifact," Information Systems Research, INFORMS, vol. 12(2), pages 121-134, June.
- Ballings, Michel & Van den Poel, Dirk & Bogaert, Matthias, 2016. "Social media optimization: Identifying an optimal strategy for increasing network size on Facebook," Omega, Elsevier, vol. 59(PA), pages 15-25.
- Oesterreich, Thuy Duong & Anton, Eduard & Teuteberg, Frank & Dwivedi, Yogesh K, 2022. "The role of the social and technical factors in creating business value from big data analytics: A meta-analysis," Journal of Business Research, Elsevier, vol. 153(C), pages 128-149.
- Robert E. Levasseur, 2015. "People Skills: Building Analytics Decision Models That Managers Use—A Change Management Perspective," Interfaces, INFORMS, vol. 45(4), pages 363-364, August.
- Jayashankar M. Swaminathan, 2018. "Big Data Analytics for Rapid, Impactful, Sustained, and Efficient (RISE) Humanitarian Operations," Production and Operations Management, Production and Operations Management Society, vol. 27(9), pages 1696-1700, September.
- Christian Janiesch & Patrick Zschech & Kai Heinrich, 2021. "Machine learning and deep learning," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(3), pages 685-695, September.
- Suvarna, Manu & Jahirul, Mohammad Islam & Aaron-Yeap, Wai Hung & Augustine, Cheryl Valencia & Umesh, Anushri & Rasul, Mohammad Golam & Günay, Mehmet Erdem & Yildirim, Ramazan & Janaun, Jidon, 2022. "Predicting biodiesel properties and its optimal fatty acid profile via explainable machine learning," Renewable Energy, Elsevier, vol. 189(C), pages 245-258.
- Käki, Anssi & Kemppainen, Katariina & Liesiö, Juuso, 2019. "What to do when decision-makers deviate from model recommendations? Empirical evidence from hydropower industry," European Journal of Operational Research, Elsevier, vol. 278(3), pages 869-882.
- Dursun Delen & Sudha Ram, 2018. "Research challenges and opportunities in business analytics," Journal of Business Analytics, Taylor & Francis Journals, vol. 1(1), pages 2-12, January.
- Tobias Mettler & Michaela Sprenger & Robert Winter, 2017. "Service robots in hospitals: new perspectives on niche evolution and technology affordances," European Journal of Information Systems, Taylor & Francis Journals, vol. 26(5), pages 451-468, September.
- Jonas Wanner & Lukas-Valentin Herm & Kai Heinrich & Christian Janiesch, 2022. "The effect of transparency and trust on intelligent system acceptance: Evidence from a user-based study," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 2079-2102, December.
- Dimitris Bertsimas & Nathan Kallus, 2020. "From Predictive to Prescriptive Analytics," Management Science, INFORMS, vol. 66(3), pages 1025-1044, March.
- Mehmet Basdere & Gabriel Caniglia & Charles Collar & Christian Rozolis & George Chiampas & Michael Nishi & Karen Smilowitz, 2019. "SAFE: A Comprehensive Data Visualization System," Interfaces, INFORMS, vol. 49(4), pages 249-261, July.
- Soeffker, Ninja & Ulmer, Marlin W. & Mattfeld, Dirk C., 2022. "Stochastic dynamic vehicle routing in the light of prescriptive analytics: A review," European Journal of Operational Research, Elsevier, vol. 298(3), pages 801-820.
- Appelbaum, Deniz & Kogan, Alexander & Vasarhelyi, Miklos & Yan, Zhaokai, 2017. "Impact of business analytics and enterprise systems on managerial accounting," International Journal of Accounting Information Systems, Elsevier, vol. 25(C), pages 29-44.
- Lepenioti, Katerina & Bousdekis, Alexandros & Apostolou, Dimitris & Mentzas, Gregoris, 2020. "Prescriptive analytics: Literature review and research challenges," International Journal of Information Management, Elsevier, vol. 50(C), pages 57-70.
- Lukas-Valentin Herm & Theresa Steinbach & Jonas Wanner & Christian Janiesch, 2022. "A nascent design theory for explainable intelligent systems," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 2185-2205, December.
- Harriet Fox & Ajit C. Pillai & Daniel Friedrich & Maurizio Collu & Tariq Dawood & Lars Johanning, 2022. "A Review of Predictive and Prescriptive Offshore Wind Farm Operation and Maintenance," Energies, MDPI, vol. 15(2), pages 1-27, January.
- Effah, John & Amankwah-Sarfo, Fred & Boateng, Richard, 2021. "Affordances and constraints processes of smart service systems: Insights from the case of seaport security in Ghana," International Journal of Information Management, Elsevier, vol. 58(C).
- Hossein Abdollahnejadbarough & Kalyan S Mupparaju & Sagar Shah & Colin P. Golding & Abelardo C. Leites & Timothy D. Popp & Eric Shroyer & Yanai S. Golany & Anne G. Robinson & Vedat Akgun, 2020. "Verizon Uses Advanced Analytics to Rationalize Its Tail Spend Suppliers," Interfaces, INFORMS, vol. 50(3), pages 197-211, May.
- Haoxiang Yang & Daniel Duque & David P. Morton, 2022. "Optimizing diesel fuel supply chain operations to mitigate power outages for hurricane relief," IISE Transactions, Taylor & Francis Journals, vol. 54(10), pages 936-949, July.
- Sturm, Timo & Gerlach, Jin & Pumplun, Luisa & Mesbah, Neda & Peters, Felix & Tauchert, Christoph & Nan, Ning & Buxmann, Peter, 2021. "Coordinating Human and Machine Learning for Effective Organizational Learning," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 125653, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
- Edgar Gutierrez-Franco & Christopher Mejia-Argueta & Luis Rabelo, 2021. "Data-Driven Methodology to Support Long-Lasting Logistics and Decision Making for Urban Last-Mile Operations," Sustainability, MDPI, vol. 13(11), pages 1-33, June.
- Mortenson, Michael J. & Doherty, Neil F. & Robinson, Stewart, 2015. "Operational research from Taylorism to Terabytes: A research agenda for the analytics age," European Journal of Operational Research, Elsevier, vol. 241(3), pages 583-595.
- Alexander Zadorojniy & Segev Wasserkrug & Sergey Zeltyn & Vladimir Lipets, 2019. "Unleashing Analytics to Reduce Costs and Improve Quality in Wastewater Treatment," Interfaces, INFORMS, vol. 49(4), pages 262-268, July.
- Leonardo Galli & Tommaso Levato & Fabio Schoen & Luca Tigli, 2021. "Prescriptive analytics for inventory management in health care," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 72(10), pages 2211-2224, October.
- Berna Tektaş & Hasan Hüseyin Turan & Nihat Kasap & Ferhan Çebi & Dursun Delen, 2022. "A Fuzzy Prescriptive Analytics Approach to Power Generation Capacity Planning," Energies, MDPI, vol. 15(9), pages 1-26, April.
- Don Perugini & Michelle Perugini, 2014. "Characterised and personalised predictive-prescriptive analytics using agent-based simulation," International Journal of Data Analysis Techniques and Strategies, Inderscience Enterprises Ltd, vol. 6(3), pages 209-227.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Godé, Cécile & Brion, Sébastien, 2024.
"The affordance-actualization process of predictive analytics: Towards a configurational framework of a predictive policing system,"
Technological Forecasting and Social Change, Elsevier, vol. 204(C).
- Cécile Godé & Sébastien Brion, 2024. "The affordance-actualization process of predictive analytics: Towards a configurational framework of a predictive policing system," Post-Print hal-04582861, HAL.
- Cécile Godé & Sébastien Brion, 2024. "The affordance-actualization process of predictive analytics: Towards a configurational framework of a predictive policing system," Post-Print hal-04582512, HAL.
- Erkip, Nesim Kohen, 2023. "Can accessing much data reshape the theory? Inventory theory under the challenge of data-driven systems," European Journal of Operational Research, Elsevier, vol. 308(3), pages 949-959.
- Shiyu Liu & Ou Liu & Junyang Chen, 2023. "A Review on Business Analytics: Definitions, Techniques, Applications and Challenges," Mathematics, MDPI, vol. 11(4), pages 1-20, February.
- Filom, Siyavash & Amiri, Amir M. & Razavi, Saiedeh, 2022. "Applications of machine learning methods in port operations – A systematic literature review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
- Hauser, Matthias & Flath, Christoph M. & Thiesse, Frédéric, 2021. "Catch me if you scan: Data-driven prescriptive modeling for smart store environments," European Journal of Operational Research, Elsevier, vol. 294(3), pages 860-873.
- Alexander Mayr & Philip Stahmann & Maximilian Nebel & Christian Janiesch, 2024. "Still doing it yourself? Investigating determinants for the adoption of intelligent process automation," Electronic Markets, Springer;IIM University of St. Gallen, vol. 34(1), pages 1-22, December.
- Han, Shuihua & Chen, Linlin & Su, Zhaopei & Gupta, Shivam & Sivarajah, Uthayasankar, 2024. "Identifying a good business location using prescriptive analytics: Restaurant location recommendation based on spatial data mining," Journal of Business Research, Elsevier, vol. 179(C).
- Leonardo Banh & Gero Strobel, 2023. "Generative artificial intelligence," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-17, December.
- Francis Aboagye‐Otchere & Cletus Agyenim‐Boateng & Abdulai Enusah & Theodora Ekua Aryee, 2021. "A Review of Big Data Research in Accounting," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 28(4), pages 268-283, October.
- Oesterreich, Thuy Duong & Anton, Eduard & Teuteberg, Frank & Dwivedi, Yogesh K, 2022. "The role of the social and technical factors in creating business value from big data analytics: A meta-analysis," Journal of Business Research, Elsevier, vol. 153(C), pages 128-149.
- Sheshadri Chatterjee & Ranjan Chaudhuri & Demetris Vrontis, 2024. "Does data-driven culture impact innovation and performance of a firm? An empirical examination," Annals of Operations Research, Springer, vol. 333(2), pages 601-626, February.
- Ekaterina Jussupow & Kai Spohrer & Armin Heinzl, 2022. "Radiologists’ Usage of Diagnostic AI Systems," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 64(3), pages 293-309, June.
- Gambella, Claudio & Ghaddar, Bissan & Naoum-Sawaya, Joe, 2021. "Optimization problems for machine learning: A survey," European Journal of Operational Research, Elsevier, vol. 290(3), pages 807-828.
- Aydiner, Arafat Salih & Tatoglu, Ekrem & Bayraktar, Erkan & Zaim, Selim & Delen, Dursun, 2019. "Business analytics and firm performance: The mediating role of business process performance," Journal of Business Research, Elsevier, vol. 96(C), pages 228-237.
- Tobias Bender, 2024. "Towards a process selection method for embedded analytics," Information Systems and e-Business Management, Springer, vol. 22(3), pages 501-525, September.
- Constantin Zopounidis & Michalis Doumpos & Dimitrios Niklis, 2018. "Financial decision support: an overview of developments and recent trends," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 63-76, June.
- Ranjan Chaudhuri & Sheshadri Chatterjee & Demetris Vrontis & Alkis Thrassou, 2024. "Adoption of robust business analytics for product innovation and organizational performance: the mediating role of organizational data-driven culture," Annals of Operations Research, Springer, vol. 339(3), pages 1757-1791, August.
- Sel, Burakhan & Minner, Stefan, 2022. "A hedging policy for seaborne forward freight markets based on probabilistic forecasts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
- Anastasia Griva & Cleopatra Bardaki & Katerina Pramatari & Georgios Doukidis, 2022. "Factors Affecting Customer Analytics: Evidence from Three Retail Cases," Information Systems Frontiers, Springer, vol. 24(2), pages 493-516, April.
- Zhang, Chenliang & Jin, Zhongyi & Ng, Kam K.H. & Tang, Tie-Qiao & Zhang, Fangni & Liu, Wei, 2025. "Predictive and prescriptive analytics for robust airport gate assignment planning in airside operations under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 195(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infsem:v:23:y:2025:i:2:d:10.1007_s10257-024-00688-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/spr/infsem/v23y2025i2d10.1007_s10257-024-00688-w.html