IDEAS home Printed from https://ideas.repec.org/a/spr/fininn/v11y2025i1d10.1186_s40854-025-00777-w.html
   My bibliography  Save this article

Crypto market betas: the limits of predictability and hedging

Author

Listed:
  • Jan Sila

    (Charles University
    Czech Academy of Sciences)

  • Michael Mark
  • Ladislav Kristoufek

    (Charles University
    Czech Academy of Sciences)

  • Thomas A. Weber

    (École Polytechnique Fédérale de Lausanne)

Abstract

This article analyzes the predictability of market betas concerning cryptocurrency assets and evaluates the efficiency of beta-hedged, market-neutral portfolios. We forecast 1-year-ahead market betas using various estimating methods, including ordinary least squares (OLS) and Vasicek’s Bayesian shrinkage estimator, and assess their impact on portfolio variance reduction across cryptomarket indices. Our findings indicate that while standard OLS betas explain significantly less of the variation in future betas for cryptoassets compared to US stocks, slope winsorization and Bayesian shrinkage improve prediction accuracy. The results suggest that beta-hedged portfolios reduce variance for approximately 17% of the universe, with the Broad Digital Market Index demonstrating the best hedging efficiency. These findings underscore the significant challenges of developing effective hedging strategies in the cryptocurrency market, emphasizing the importance of idiosyncratic risk in crypto returns and the need for appropriate market index representation.

Suggested Citation

  • Jan Sila & Michael Mark & Ladislav Kristoufek & Thomas A. Weber, 2025. "Crypto market betas: the limits of predictability and hedging," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 11(1), pages 1-28, December.
  • Handle: RePEc:spr:fininn:v:11:y:2025:i:1:d:10.1186_s40854-025-00777-w
    DOI: 10.1186/s40854-025-00777-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40854-025-00777-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40854-025-00777-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ang, Andrew & Liu, Jun & Schwarz, Krista, 2020. "Using Stocks or Portfolios in Tests of Factor Models," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(3), pages 709-750, May.
    2. Kelly, Bryan T. & Pruitt, Seth & Su, Yinan, 2019. "Characteristics are covariances: A unified model of risk and return," Journal of Financial Economics, Elsevier, vol. 134(3), pages 501-524.
    3. Jagannathan, Ravi & Wang, Zhenyu, 1996. "The Conditional CAPM and the Cross-Section of Expected Returns," Journal of Finance, American Finance Association, vol. 51(1), pages 3-53, March.
    4. Ang, Andrew & Kristensen, Dennis, 2012. "Testing conditional factor models," Journal of Financial Economics, Elsevier, vol. 106(1), pages 132-156.
    5. Choudhry, Taufiq, 2003. "Short-run deviations and optimal hedge ratio: evidence from stock futures," Journal of Multinational Financial Management, Elsevier, vol. 13(2), pages 171-192, April.
    6. Francis Liu & Natalie Packham & Meng-Jou Lu & Wolfgang Karl Härdle, 2023. "Hedging cryptos with Bitcoin futures," Quantitative Finance, Taylor & Francis Journals, vol. 23(5), pages 819-841, May.
    7. Cecchetti, Stephen G & Cumby, Robert E & Figlewski, Stephen, 1988. "Estimation of the Optimal Futures Hedge," The Review of Economics and Statistics, MIT Press, vol. 70(4), pages 623-630, November.
    8. Lien, Donald, 2004. "Cointegration and the optimal hedge ratio: the general case," The Quarterly Review of Economics and Finance, Elsevier, vol. 44(5), pages 654-658, December.
    9. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Ginger Wu, 2006. "Realized Beta: Persistence and Predictability," Advances in Econometrics, in: Econometric Analysis of Financial and Economic Time Series, pages 1-39, Emerald Group Publishing Limited.
    10. Adrian, Tobias & Franzoni, Francesco, 2009. "Learning about beta: Time-varying factor loadings, expected returns, and the conditional CAPM," Journal of Empirical Finance, Elsevier, vol. 16(4), pages 537-556, September.
    11. Chang, Bo Young & Christoffersen, Peter & Jacobs, Kris, 2013. "Market skewness risk and the cross section of stock returns," Journal of Financial Economics, Elsevier, vol. 107(1), pages 46-68.
    12. Baillie, Richard T & Myers, Robert J, 1991. "Bivariate GARCH Estimation of the Optimal Commodity Futures Hedge," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(2), pages 109-124, April-Jun.
    13. Herskovic, Bernard & Kelly, Bryan & Lustig, Hanno & Van Nieuwerburgh, Stijn, 2016. "The common factor in idiosyncratic volatility: Quantitative asset pricing implications," Journal of Financial Economics, Elsevier, vol. 119(2), pages 249-283.
    14. Ederington, Louis H, 1979. "The Hedging Performance of the New Futures Markets," Journal of Finance, American Finance Association, vol. 34(1), pages 157-170, March.
    15. Brenner, Menachem & Smidt, Seymour, 1977. "A Simple Model of Non-Stationarity of Systematic Risk," Journal of Finance, American Finance Association, vol. 32(4), pages 1081-1092, September.
    16. Dimpfl, Thomas & Peter, Franziska J., 2021. "Nothing but noise? Price discovery across cryptocurrency exchanges," Journal of Financial Markets, Elsevier, vol. 54(C).
    17. John Lintner, 1965. "Security Prices, Risk, And Maximal Gains From Diversification," Journal of Finance, American Finance Association, vol. 20(4), pages 587-615, December.
    18. Robert F. Engle, 2016. "Dynamic Conditional Beta," Journal of Financial Econometrics, Oxford University Press, vol. 14(4), pages 643-667.
    19. Martin Lettau & Sydney Ludvigson, 2001. "Resurrecting the (C)CAPM: A Cross-Sectional Test When Risk Premia Are Time-Varying," Journal of Political Economy, University of Chicago Press, vol. 109(6), pages 1238-1287, December.
    20. Andrew Ang & Robert J. Hodrick & Yuhang Xing & Xiaoyan Zhang, 2006. "The Cross‐Section of Volatility and Expected Returns," Journal of Finance, American Finance Association, vol. 61(1), pages 259-299, February.
    21. Blume, Marshall E, 1970. "Portfolio Theory: A Step Toward Its Practical Application," The Journal of Business, University of Chicago Press, vol. 43(2), pages 152-173, April.
    22. Groenewold, Nicolaas & Fraser, Patricia, 1999. "Time-varying estimates of CAPM betas," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 48(4), pages 531-539.
    23. Ivo Welch, 2022. "Simply Better Market Betas," Critical Finance Review, now publishers, vol. 11(1), pages 37-64, February.
    24. Dimson, Elroy, 1979. "Risk measurement when shares are subject to infrequent trading," Journal of Financial Economics, Elsevier, vol. 7(2), pages 197-226, June.
    25. Lewellen, Jonathan & Nagel, Stefan, 2006. "The conditional CAPM does not explain asset-pricing anomalies," Journal of Financial Economics, Elsevier, vol. 82(2), pages 289-314, November.
    26. Donald Lien, 2005. "A note on the superiority of the OLS hedge ratio," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 25(11), pages 1121-1126, November.
    27. Bos, T & Newbold, P, 1984. "An Empirical Investigation of the Possibility of Stochastic Systematic Risk in the Market Model," The Journal of Business, University of Chicago Press, vol. 57(1), pages 35-41, January.
    28. Trimborn, Simon & Härdle, Wolfgang Karl, 2018. "CRIX an Index for cryptocurrencies," Journal of Empirical Finance, Elsevier, vol. 49(C), pages 107-122.
    29. Crépellière, Tommy & Pelster, Matthias & Zeisberger, Stefan, 2023. "Arbitrage in the market for cryptocurrencies," Journal of Financial Markets, Elsevier, vol. 64(C).
    30. Symitsi, Efthymia & Chalvatzis, Konstantinos J., 2019. "The economic value of Bitcoin: A portfolio analysis of currencies, gold, oil and stocks," Research in International Business and Finance, Elsevier, vol. 48(C), pages 97-110.
    31. Wolfgang Karl Härdle & Campbell R Harvey & Raphael C G Reule, 2020. "Understanding Cryptocurrencies," Journal of Financial Econometrics, Oxford University Press, vol. 18(2), pages 181-208.
    32. Dirk G. Baur & Thomas Dimpfl, 2019. "Price discovery in bitcoin spot or futures?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(7), pages 803-817, July.
    33. Robert J. Myers & Stanley R. Thompson, 1989. "Generalized Optimal Hedge Ratio Estimation," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 71(4), pages 858-868.
    34. Blume, Marshall E, 1975. "Betas and Their Regression Tendencies," Journal of Finance, American Finance Association, vol. 30(3), pages 785-795, June.
    35. Chris Brooks & Olan T. Henry & Gita Persand, 2002. "The Effect of Asymmetries on Optimal Hedge Ratios," The Journal of Business, University of Chicago Press, vol. 75(2), pages 333-352, April.
    36. Carhart, Mark M, 1997. "On Persistence in Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 52(1), pages 57-82, March.
    37. Jun Deng & Huifeng Pan & Shuyu Zhang & Bin Zou, 2020. "Minimum-variance hedging of Bitcoin inverse futures," Applied Economics, Taylor & Francis Journals, vol. 52(58), pages 6320-6337, December.
    38. Chen, Sheng-Syan & Lee, Cheng-few & Shrestha, Keshab, 2003. "Futures hedge ratios: a review," The Quarterly Review of Economics and Finance, Elsevier, vol. 43(3), pages 433-465.
    39. Zhang, Wei & Li, Yi, 2020. "Is idiosyncratic volatility priced in cryptocurrency markets?," Research in International Business and Finance, Elsevier, vol. 54(C).
    40. Baur, Dirk G. & Dimpfl, Thomas & Kuck, Konstantin, 2018. "Bitcoin, gold and the US dollar – A replication and extension," Finance Research Letters, Elsevier, vol. 25(C), pages 103-110.
    41. Hollstein, Fabian & Prokopczuk, Marcel & Wese Simen, Chardin, 2019. "Estimating beta: Forecast adjustments and the impact of stock characteristics for a broad cross-section," Journal of Financial Markets, Elsevier, vol. 44(C), pages 91-118.
    42. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    43. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    44. Vasicek, Oldrich A, 1973. "A Note on Using Cross-Sectional Information in Bayesian Estimation of Security Betas," Journal of Finance, American Finance Association, vol. 28(5), pages 1233-1239, December.
    45. Wolfgang Karl Hardle & Campbell R. Harvey & Raphael C. G. Reule, 2020. "Editorial: Understanding Cryptocurrencies," Papers 2007.14702, arXiv.org.
    46. Yudong Wang & Chongfeng Wu & Li Yang, 2015. "Hedging with Futures: Does Anything Beat the Naïve Hedging Strategy?," Management Science, INFORMS, vol. 61(12), pages 2870-2889, December.
    47. Yukun Liu & Aleh Tsyvinski & Xi Wu, 2022. "Common Risk Factors in Cryptocurrency," Journal of Finance, American Finance Association, vol. 77(2), pages 1133-1177, April.
    48. Sebastião, Helder & Godinho, Pedro, 2020. "Bitcoin futures: An effective tool for hedging cryptocurrencies," Finance Research Letters, Elsevier, vol. 33(C).
    49. Black, Fischer, 1972. "Capital Market Equilibrium with Restricted Borrowing," The Journal of Business, University of Chicago Press, vol. 45(3), pages 444-455, July.
    50. Blume, Marshall E, 1971. "On the Assessment of Risk," Journal of Finance, American Finance Association, vol. 26(1), pages 1-10, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hollstein, Fabian & Prokopczuk, Marcel & Wese Simen, Chardin, 2020. "Beta uncertainty," Journal of Banking & Finance, Elsevier, vol. 116(C).
    2. Sebastien Valeyre & Sofiane Aboura & Denis Grebenkov, 2019. "The Reactive Beta Model," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 42(1), pages 71-113, March.
    3. Turan G. Bali & Robert F. Engle & Yi Tang, 2017. "Dynamic Conditional Beta Is Alive and Well in the Cross Section of Daily Stock Returns," Management Science, INFORMS, vol. 63(11), pages 3760-3779, November.
    4. Ortas, E. & Salvador, M. & Moneva, J.M., 2015. "Improved beta modeling and forecasting: An unobserved component approach with conditional heteroscedastic disturbances," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 27-51.
    5. Hollstein, Fabian & Prokopczuk, Marcel, 2022. "Testing Factor Models in the Cross-Section," Journal of Banking & Finance, Elsevier, vol. 145(C).
    6. Wang, Jianqiu & Wu, Ke & Pan, Jiening & Jiang, Ying, 2023. "Disagreement, speculation, and the idiosyncratic volatility," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 232-250.
    7. Richard T. Baillie & Fabio Calonaci & George Kapetanios, 2019. "Hierarchical Time Varying Estimation of a Multi Factor Asset Pricing Model," Working Papers 879, Queen Mary University of London, School of Economics and Finance.
    8. Stefan Nagel, 2013. "Empirical Cross-Sectional Asset Pricing," Annual Review of Financial Economics, Annual Reviews, vol. 5(1), pages 167-199, November.
    9. Cynthia M. Gong & Di Luo & Huainan Zhao, 2021. "Liquidity risk and the beta premium," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 44(4), pages 789-814, December.
    10. Amit Goyal, 2012. "Empirical cross-sectional asset pricing: a survey," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 26(1), pages 3-38, March.
    11. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2020. "Estimation of large dimensional conditional factor models in finance," Handbook of Econometrics, in: Steven N. Durlauf & Lars Peter Hansen & James J. Heckman & Rosa L. Matzkin (ed.), Handbook of Econometrics, edition 1, volume 7, chapter 0, pages 219-282, Elsevier.
    12. Avanidhar Subrahmanyam, 2010. "The Cross†Section of Expected Stock Returns: What Have We Learnt from the Past Twenty†Five Years of Research?," European Financial Management, European Financial Management Association, vol. 16(1), pages 27-42, January.
    13. Cederburg, Scott & O’Doherty, Michael S., 2015. "Asset-pricing anomalies at the firm level," Journal of Econometrics, Elsevier, vol. 186(1), pages 113-128.
    14. Vendrame, Vasco & Guermat, Cherif & Tucker, Jon, 2023. "A conditional higher-moment CAPM," International Review of Financial Analysis, Elsevier, vol. 86(C).
    15. Vafai, Nima & Rakowski, David, 2024. "The sources of portfolio volatility and mutual fund performance," International Review of Financial Analysis, Elsevier, vol. 91(C).
    16. Michael Hasler & Charles Martineau, 2023. "Explaining the Failure of the Unconditional CAPM with the Conditional CAPM," Management Science, INFORMS, vol. 69(3), pages 1835-1855, March.
    17. Constantinos Antoniou & John A. Doukas & Avanidhar Subrahmanyam, 2016. "Investor Sentiment, Beta, and the Cost of Equity Capital," Management Science, INFORMS, vol. 62(2), pages 347-367, February.
    18. repec:ers:journl:v:xxiv:y:2021:i:4:p:370-395 is not listed on IDEAS
    19. Tim Bollerslev & Sophia Zhengzi Li & Viktor Todorov, 2014. "Roughing up Beta: Continuous vs. Discontinuous Betas, and the Cross-Section of Expected Stock Returns," CREATES Research Papers 2014-48, Department of Economics and Business Economics, Aarhus University.
    20. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, December.
    21. Xu, Xia, 2025. "Market neutrality and beta crashes," Journal of Empirical Finance, Elsevier, vol. 80(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fininn:v:11:y:2025:i:1:d:10.1186_s40854-025-00777-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.