IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v27y2025i5d10.1007_s10668-023-04334-2.html
   My bibliography  Save this article

Analysis and prediction of CO2 emissions from commercial energy consumption and emission reduction potential of renewable energy in China

Author

Listed:
  • Xinxin Zhang

    (Beijing University of Technology
    Beijing University of Technology)

  • Kaili Xu

    (Beijing University of Technology
    Beijing University of Technology)

Abstract

Based on the relevant data from 2001 to 2019, an internationally agreed methodology for calculating CO2 emissions developed by Intergovernmental Panel on Climate Change is used in this paper to calculate CO2 emissions generated by commercial energy consumption in China. On this basis, the regional heterogeneity of commercial energy consumption and CO2 emissions is compared and analyzed on a provincial scale. Moreover, the CO2 emissions reduction potential of renewable energy power generation is analyzed. The consumption of commercial energy and its related carbon emissions, the power generation from renewable energy and its resulting carbon emission reduction from 2020 to 2030 are also predicted by using SPSS (Statistical Product and Service Solutions). The prediction show that the consumption of coal, natural gas and electricity is expected to be 5592.0699 million tons, 625.099 billion cubic meters, and 10996.462 billion kWh, respectively by 2030, when the carbon emissions reach the peak, and CO2 emissions generated by the consumption of coal and natural gas will reach 9.40 × 1012 and 1.37 × 1012 kg, respectively. Wind, hydropower, solar and biomass power generation are expected to be 847753.3 kWh, 1933147.57, 498087.78 and 149955.00 GWh, respectively, which can reduce CO2 emissions by about 2.45 × 1011, 5.59 × 1011, 1.44 × 1011 and 4.34 × 1010 kg, respectively.

Suggested Citation

  • Xinxin Zhang & Kaili Xu, 2025. "Analysis and prediction of CO2 emissions from commercial energy consumption and emission reduction potential of renewable energy in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(5), pages 10835-10856, May.
  • Handle: RePEc:spr:endesu:v:27:y:2025:i:5:d:10.1007_s10668-023-04334-2
    DOI: 10.1007/s10668-023-04334-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-04334-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-04334-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Xiaosan, Zhang & Qingquan, Jiang & Shoukat Iqbal, Khattak & Manzoor, Ahmad & Zia Ur, Rahman, 2021. "Achieving sustainability and energy efficiency goals: Assessing the impact of hydroelectric and renewable electricity generation on carbon dioxide emission in China," Energy Policy, Elsevier, vol. 155(C).
    2. Ding, Yuanping & Dang, Yaoguo, 2023. "Forecasting renewable energy generation with a novel flexible nonlinear multivariable discrete grey prediction model," Energy, Elsevier, vol. 277(C).
    3. Keles, Dogan & Yilmaz, Hasan Ümitcan, 2020. "Decarbonisation through coal phase-out in Germany and Europe — Impact on Emissions, electricity prices and power production," Energy Policy, Elsevier, vol. 141(C).
    4. Liu, Xiaohong & Zhao, Tong & Chang, Ching-Ter & Fu, Changjui James, 2021. "China’s renewable energy strategy and industrial adjustment policy," Renewable Energy, Elsevier, vol. 170(C), pages 1382-1395.
    5. Wang, Yongpei & Yan, Qing & Luo, Yifei & Zhang, Qian, 2023. "Carbon abatement of electricity sector with renewable energy deployment: Evidence from China," Renewable Energy, Elsevier, vol. 210(C), pages 1-11.
    6. Cao, Xin & Liu, Chang & Wu, Mingxuan & Li, Zhi & Wang, Yihan & Wen, Zongguo, 2023. "Heterogeneity and connection in the spatial–temporal evolution trend of China’s energy consumption at provincial level," Applied Energy, Elsevier, vol. 336(C).
    7. Liu, Wenling & Spaargaren, Gert & Heerink, Nico & Mol, Arthur P.J. & Wang, Can, 2013. "Energy consumption practices of rural households in north China: Basic characteristics and potential for low carbon development," Energy Policy, Elsevier, vol. 55(C), pages 128-138.
    8. Rodrigues, João F.D. & Wang, Juan & Behrens, Paul & de Boer, Paul, 2020. "Drivers of CO2 emissions from electricity generation in the European Union 2000–2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xueyang & Sun, Xiumei & Ahmad, Mahmood & Chen, Jiawei, 2024. "Energy transition, ecological governance, globalization, and environmental sustainability: Insights from the top ten emitting countries," Energy, Elsevier, vol. 292(C).
    2. Michael Metzger & Mathias Duckheim & Marco Franken & Hans Joerg Heger & Matthias Huber & Markus Knittel & Till Kolster & Martin Kueppers & Carola Meier & Dieter Most & Simon Paulus & Lothar Wyrwoll & , 2021. "Pathways toward a Decarbonized Future—Impact on Security of Supply and System Stability in a Sustainable German Energy System," Energies, MDPI, vol. 14(3), pages 1-28, January.
    3. Charfeddine, Lanouar & Umlai, Mohamed, 2023. "ICT sector, digitization and environmental sustainability: A systematic review of the literature from 2000 to 2022," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    4. Xinkuo Xu & Liyan Han, 2017. "Diverse Effects of Consumer Credit on Household Carbon Emissions at Quantiles: Evidence from Urban China," Sustainability, MDPI, vol. 9(9), pages 1-25, September.
    5. Guozhong Zheng & Wentao Bu, 2018. "Review of Heating Methods for Rural Houses in China," Energies, MDPI, vol. 11(12), pages 1-18, December.
    6. Ge, Zewen & Geng, Yong & Wei, Wendong & Jiang, Mingkun & Chen, Bin & Li, Jiashuo, 2023. "Embodied carbon emissions induced by the construction of hydropower infrastructure in China," Energy Policy, Elsevier, vol. 173(C).
    7. Abudureheman, Maliyamu & Jiang, Qingzhe & Dong, Xiucheng & Dong, Cong, 2022. "Spatial effects of dynamic comprehensive energy efficiency on CO2 reduction in China," Energy Policy, Elsevier, vol. 166(C).
    8. Kristiana Dolge & Dagnija Blumberga, 2023. "Transitioning to Clean Energy: A Comprehensive Analysis of Renewable Electricity Generation in the EU-27," Energies, MDPI, vol. 16(18), pages 1-27, September.
    9. Guo Li & Wenling Liu & Zhaohua Wang & Mengqi Liu, 2017. "An empirical examination of energy consumption, behavioral intention, and situational factors: evidence from Beijing," Annals of Operations Research, Springer, vol. 255(1), pages 507-524, August.
    10. Li, Xue & Lin, Cong & Wang, Yang & Zhao, Lingying & Duan, Na & Wu, Xudong, 2015. "Analysis of rural household energy consumption and renewable energy systems in Zhangziying town of Beijing," Ecological Modelling, Elsevier, vol. 318(C), pages 184-193.
    11. Hamed, Mohammad M. & Mohammed, Ali & Olabi, Abdul Ghani, 2023. "Renewable energy adoption decisions in Jordan's industrial sector: Statistical analysis with unobserved heterogeneity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    12. Ugur Korkut Pata & Selin Karlilar Pata, 2024. "Towards sustainable development in African countries: Are modern and combustible renewable energies effective?," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(6), pages 6493-6503, December.
    13. Malla, Sunil & Timilsina, Govinda R, 2014. "Household cooking fuel choice and adoption of improved cookstoves in developing countries : a review," Policy Research Working Paper Series 6903, The World Bank.
    14. Zhang, Weishi & Xu, Ying & Wang, Can & Streets, David G., 2022. "Assessment of the driving factors of CO2 mitigation costs of household biogas systems in China: A LMDI decomposition with cost analysis model," Renewable Energy, Elsevier, vol. 181(C), pages 978-989.
    15. D'Orazio, Paola & Hertel, Tobias & Kasbrink, Fynn, 2022. "No need to worry? Estimating the exposure of the German banking sector to climate-related transition risks," Ruhr Economic Papers 946, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    16. Maxwell Chukwudi Udeagha & Edwin Muchapondwa, 2023. "Environmental sustainability in South Africa: Understanding the criticality of economic policy uncertainty, fiscal decentralization, and green innovation," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(3), pages 1638-1651, June.
    17. Nicolli, Francesco & Gilli, Marianna & Vona, Francesco, 2025. "Inequality and climate change: Two problems, one solution?," Energy Economics, Elsevier, vol. 145(C).
    18. Olabisi, Michael & Tschirley, David L. & Nyange, David & Awokuse, Titus, 2019. "Energy demand substitution from biomass to imported kerosene: Evidence from Tanzania," Energy Policy, Elsevier, vol. 130(C), pages 243-252.
    19. Macedo, Daniela Pereira & Marques, António Cardoso & Damette, Olivier, 2022. "The role of electricity flows and renewable electricity production in the behaviour of electricity prices in Spain," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 885-900.
    20. Klöckner, Kai & Letmathe, Peter, 2020. "Is the coherence of coal phase-out and electrolytic hydrogen production the golden path to effective decarbonisation?," Applied Energy, Elsevier, vol. 279(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:27:y:2025:i:5:d:10.1007_s10668-023-04334-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.