IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v27y2025i2d10.1007_s10668-023-04007-0.html
   My bibliography  Save this article

Study on the driving factors and decoupling effect of carbon emission from pig farming in China—based on LMDI and Tapio model

Author

Listed:
  • Bian Yang

    (Sichuan Agricultural University)

  • Yufeng Wang

    (Sichuan Agricultural University)

  • Rahman Dunya

    (Sichuan Agricultural University)

  • Xiangshang Yuan

    (Sichuan Agricultural University)

Abstract

The livestock sector accounts for 18% of total anthropogenic carbon emissions and is an important source of global greenhouse gas (GHG) emissions. China occupies a large proportion of total livestock carbon emissions worldwide, especially in the pig industry, which is significant to China's agricultural economy and also a key area for China to achieve the "Carbon peaking and Carbon neutrality goals." This study uses the life cycle approach to calculate the GHG emission status of China's pig farming industry from 2001 to 2020, and then, we establish a logarithmic mean Divisia index (LMDI) model to identify the main driving factors and a Tapio decoupling model to analyze its decoupling status. We decompose the emission sources as well as decoupling index into five drivers: technological progress, livestock structure, policy bias, affluence, and population. The results reveal that the carbon emission of China's pig industry is in a weak growth trend and overall in a weak decoupling state but has volatility, which is closely related to the "Pig Cycle" in China. Decomposition analysis shows that increasing affluence and population growth are the main drivers of GHG emissions; simultaneously, technological progress, livestock structure, and policy bias are the main drivers of emission reduction. Meanwhile, technological and policy factors positively contribute to the decoupling status, while affluence level, population, and livestock structure changes negatively inhibit the decoupling status. The study concludes that technological advances, optimized economic structures, the guidance of green consumption patterns, and the solution to the "Pig Cycle" problem are crucial to further reduce GHG emissions from China's pig industry; meanwhile, technological changes have a dominant role in promoting carbon decoupling in pig farming.

Suggested Citation

  • Bian Yang & Yufeng Wang & Rahman Dunya & Xiangshang Yuan, 2025. "Study on the driving factors and decoupling effect of carbon emission from pig farming in China—based on LMDI and Tapio model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(2), pages 3145-3175, February.
  • Handle: RePEc:spr:endesu:v:27:y:2025:i:2:d:10.1007_s10668-023-04007-0
    DOI: 10.1007/s10668-023-04007-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-04007-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-04007-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jeong, Kyonghwa & Kim, Suyi, 2013. "LMDI decomposition analysis of greenhouse gas emissions in the Korean manufacturing sector," Energy Policy, Elsevier, vol. 62(C), pages 1245-1253.
    2. Xiaojun Guo & Rui Zhang & Naiming Xie & Jingliang Jin & Lifeng Wu, 2021. "Predicting the Population Growth and Structure of China Based on Grey Fractional-Order Models," Journal of Mathematics, Hindawi, vol. 2021, pages 1-11, July.
    3. Ang, B.W. & Liu, F.L. & Chung, Hyun-Sik, 2004. "A generalized Fisher index approach to energy decomposition analysis," Energy Economics, Elsevier, vol. 26(5), pages 757-763, September.
    4. Yuanyuan Gong & Deyong Song, 2015. "Life Cycle Building Carbon Emissions Assessment and Driving Factors Decomposition Analysis Based on LMDI—A Case Study of Wuhan City in China," Sustainability, MDPI, vol. 7(12), pages 1-17, December.
    5. Ghosh, Sajal, 2010. "Examining carbon emissions economic growth nexus for India: A multivariate cointegration approach," Energy Policy, Elsevier, vol. 38(6), pages 3008-3014, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Miao & Feng, Chao, 2017. "Analysis of energy-related CO2 emissions in China’s mining industry: Evidence and policy implications," Resources Policy, Elsevier, vol. 53(C), pages 77-87.
    2. Sinha, Avik & Shahbaz, Muhammad, 2018. "Estimation of Environmental Kuznets Curve for CO2 emission: Role of renewable energy generation in India," Renewable Energy, Elsevier, vol. 119(C), pages 703-711.
    3. Muhammad Uzair Ali & Zhimin Gong & Muhammad Ubaid Ali & Fahad Asmi & Rizwanullah Muhammad, 2022. "CO2 emission, economic development, fossil fuel consumption and population density in India, Pakistan and Bangladesh: A panel investigation," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 18-31, January.
    4. Kanjilal, Kakali & Ghosh, Sajal, 2013. "Environmental Kuznet’s curve for India: Evidence from tests for cointegration with unknown structuralbreaks," Energy Policy, Elsevier, vol. 56(C), pages 509-515.
    5. Kingsley Appiah & Jianguo Du & Michael Yeboah & Rhoda Appiah, 2019. "Causal relationship between Industrialization, Energy Intensity, Economic Growth and Carbon dioxide emissions: recent evidence from Uganda," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 237-245.
    6. Ang, B.W. & Liu, Na, 2007. "Energy decomposition analysis: IEA model versus other methods," Energy Policy, Elsevier, vol. 35(3), pages 1426-1432, March.
    7. Shiraki, Hiroto & Matsumoto, Ken'ichi & Shigetomi, Yosuke & Ehara, Tomoki & Ochi, Yuki & Ogawa, Yuki, 2020. "Factors affecting CO2 emissions from private automobiles in Japan: The impact of vehicle occupancy," Applied Energy, Elsevier, vol. 259(C).
    8. Usman, Muhammad & Khalid, Khaizran & Mehdi, Muhammad Abuzar, 2021. "What determines environmental deficit in Asia? Embossing the role of renewable and non-renewable energy utilization," Renewable Energy, Elsevier, vol. 168(C), pages 1165-1176.
    9. Fernández, Esteban & Fernández, Paula, 2008. "An extension to Sun's decomposition methodology: The Path Based approach," Energy Economics, Elsevier, vol. 30(3), pages 1020-1036, May.
    10. Le Hoang Phong, 2019. "Globalization, Financial Development, and Environmental Degradation in the Presence of Environmental Kuznets Curve: Evidence from ASEAN-5 Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 40-50.
    11. Eduardo Polloni-Silva & Diogo Ferraz & Flávia de Castro Camioto & Daisy Aparecida do Nascimento Rebelatto & Herick Fernando Moralles, 2021. "Environmental Kuznets Curve and the Pollution-Halo/Haven Hypotheses: An Investigation in Brazilian Municipalities," Sustainability, MDPI, vol. 13(8), pages 1-19, April.
    12. Neves, Sónia Almeida & Marques, António Cardoso & de Sá Lopes, Leonardo Batista, 2024. "Is environmental regulation keeping e-waste under control? Evidence from e-waste exports in the European Union," Ecological Economics, Elsevier, vol. 216(C).
    13. Bella, Giovanni & Massidda, Carla & Mattana, Paolo, 2014. "The relationship among CO2 emissions, electricity power consumption and GDP in OECD countries," Journal of Policy Modeling, Elsevier, vol. 36(6), pages 970-985.
    14. Muhammad, Shahbaz & Lean, Hooi Hooi & Muhammad, Shahbaz Shabbir, 2011. "Environmental Kuznets Curve and the role of energy consumption in Pakistan," MPRA Paper 34929, University Library of Munich, Germany, revised 22 Nov 2011.
    15. Hakimi, Abdelaziz & Hamdi, Helmi, 2016. "Trade liberalization, FDI inflows, environmental quality and economic growth: A comparative analysis between Tunisia and Morocco," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1445-1456.
    16. repec:ipg:wpaper:2014-542 is not listed on IDEAS
    17. Shigetomi, Yosuke & Matsumoto, Ken'ichi & Ogawa, Yuki & Shiraki, Hiroto & Yamamoto, Yuki & Ochi, Yuki & Ehara, Tomoki, 2018. "Driving forces underlying sub-national carbon dioxide emissions within the household sector and implications for the Paris Agreement targets in Japan," Applied Energy, Elsevier, vol. 228(C), pages 2321-2332.
    18. Robaina, Margarita & Neves, Ana, 2021. "Complete decomposition analysis of CO2 emissions intensity in the transport sector in Europe," Research in Transportation Economics, Elsevier, vol. 90(C).
    19. Zhang, Fan, 2013. "The energy transition of the transition economies: An empirical analysis," Energy Economics, Elsevier, vol. 40(C), pages 679-686.
    20. Chimere O. Iheonu & Ogochukwu C. Anyanwu & Obinna K. Odo & Solomon Prince Nathaniel, 2021. "Does Economic Growth, International Trade and Urbanization uphold Environmental Sustainability in sub-Saharan Africa? Insights from Quantile and Causality Procedures," Working Papers 21/003, European Xtramile Centre of African Studies (EXCAS).
    21. Shahbaz, Muhammad & Farhani, Sahbi & Ozturk, Ilhan, 2013. "Coal Consumption, Industrial Production and CO2 Emissions in China and India," MPRA Paper 50618, University Library of Munich, Germany, revised 12 Oct 2013.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:27:y:2025:i:2:d:10.1007_s10668-023-04007-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.