IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i5d10.1007_s10668-023-03344-4.html
   My bibliography  Save this article

Target decomposition of regional CO2 emissions peaking under multiple allocation models: a case study in Jiangsu province, China

Author

Listed:
  • Li Lai

    (Jiangsu Strategy and Development Research Center)

  • Xiaofeng Zhao

    (Hohai University)

  • Ying Li

    (Nanjing University of Finance & Economics)

Abstract

Target decomposition of carbon emissions peaking is critical for fulfilling carbon peaking and carbon neutrality eventually. Decomposing the national target at the provincial and city levels provides a direction for multi-level governments to mitigate regional CO2 emissions effectively. Using 13 cities in China's Jiangsu Province as an example, this study built a top-down regional target decomposition scheme of CO2 emissions peaking, combined with selected emission allowance allocation models and linear planning model, to predict and coordinate carbon emissions and peaking times of the cities. The study showed that large variations exist in the CO2 emissions allowances for different cities under different emissions allowance allocation principles. The target decomposition scheme based on an efficiency-directed model with consideration of the current emissions situation, ability to pay, energy efficiency, and development potential was most feasible. This suggested a combination of economic efficiency, fair development, and functional zoning principles. According to the sequence of peaking times, the 13 cities were classified into three clusters: leading cities, province-synchronized cities, and delayed cities. The CO2 emission peak times of cities have linear relationships with regional per capita GDP, which also indicates differentiated CO2 mitigation responsibilities. Regional target decomposition scheme of carbon peaking provides effective guidance for regional low-carbon policies and national carbon neutrality.

Suggested Citation

  • Li Lai & Xiaofeng Zhao & Ying Li, 2024. "Target decomposition of regional CO2 emissions peaking under multiple allocation models: a case study in Jiangsu province, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(5), pages 13537-13556, May.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:5:d:10.1007_s10668-023-03344-4
    DOI: 10.1007/s10668-023-03344-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03344-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03344-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rose, Adam, 1990. "Reducing conflict in global warming policy : The potential of equity as a unifying principle," Energy Policy, Elsevier, vol. 18(10), pages 927-935, December.
    2. Zhang, Lin, 2017. "Correcting the uneven burden sharing of emission reduction across provinces in China," Energy Economics, Elsevier, vol. 64(C), pages 335-345.
    3. Zhang, Xiliang & Karplus, Valerie J. & Qi, Tianyu & Zhang, Da & He, Jiankun, 2016. "Carbon emissions in China: How far can new efforts bend the curve?," Energy Economics, Elsevier, vol. 54(C), pages 388-395.
    4. Lange, Andreas & Vogt, Carsten & Ziegler, Andreas, 2007. "On the importance of equity in international climate policy: An empirical analysis," Energy Economics, Elsevier, vol. 29(3), pages 545-562, May.
    5. Wang, Xiaojun & Chen, Yiping & Chen, Jingjing & Mao, Bingjing & Peng, Lihong & Yu, Ang, 2022. "China's CO2 regional synergistic emission reduction: Killing two birds with one stone?," Energy Policy, Elsevier, vol. 168(C).
    6. Ekholm, Tommi & Soimakallio, Sampo & Moltmann, Sara & Höhne, Niklas & Syri, Sanna & Savolainen, Ilkka, 2010. "Effort sharing in ambitious, global climate change mitigation scenarios," Energy Policy, Elsevier, vol. 38(4), pages 1797-1810, April.
    7. Wang, Zheng & Zhu, Yanshuo & Zhu, Yongbin & Shi, Ying, 2016. "Energy structure change and carbon emission trends in China," Energy, Elsevier, vol. 115(P1), pages 369-377.
    8. Tilton, John E., 2016. "Global climate policy and the polluter pays principle: A different perspective," Resources Policy, Elsevier, vol. 50(C), pages 117-118.
    9. Catriona McKinnon, 2015. "Climate justice in a carbon budget," Climatic Change, Springer, vol. 133(3), pages 375-384, December.
    10. den Elzen, Michel & Höhne, Niklas & Moltmann, Sara, 2008. "The Triptych approach revisited: A staged sectoral approach for climate mitigation," Energy Policy, Elsevier, vol. 36(3), pages 1107-1124, March.
    11. Jeroen den Bergh & Ivan Savin, 2021. "Impact of Carbon Pricing on Low-Carbon Innovation and Deep Decarbonisation: Controversies and Path Forward," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(4), pages 705-715, December.
    12. Yuan, Jiahai & Xu, Yan & Hu, Zheng & Zhao, Changhong & Xiong, Minpeng & Guo, Jingsheng, 2014. "Peak energy consumption and CO2 emissions in China," Energy Policy, Elsevier, vol. 68(C), pages 508-523.
    13. Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
    14. Ren, Siyu & Hao, Yu & Xu, Lu & Wu, Haitao & Ba, Ning, 2021. "Digitalization and energy: How does internet development affect China's energy consumption?," Energy Economics, Elsevier, vol. 98(C).
    15. Wang, Ke & Zhang, Xian & Wei, Yi-Ming & Yu, Shiwei, 2013. "Regional allocation of CO2 emissions allowance over provinces in China by 2020," Energy Policy, Elsevier, vol. 54(C), pages 214-229.
    16. Fang, Kai & Zhang, Qifeng & Long, Yin & Yoshida, Yoshikuni & Sun, Lu & Zhang, Haoran & Dou, Yi & Li, Shuai, 2019. "How can China achieve its Intended Nationally Determined Contributions by 2030? A multi-criteria allocation of China’s carbon emission allowance," Applied Energy, Elsevier, vol. 241(C), pages 380-389.
    17. Yi, Wen-Jing & Zou, Le-Le & Guo, Jie & Wang, Kai & Wei, Yi-Ming, 2011. "How can China reach its CO2 intensity reduction targets by 2020? A regional allocation based on equity and development," Energy Policy, Elsevier, vol. 39(5), pages 2407-2415, May.
    18. Zhao, Xiaoli & Yin, Haitao & Zhao, Yue, 2015. "Impact of environmental regulations on the efficiency and CO2 emissions of power plants in China," Applied Energy, Elsevier, vol. 149(C), pages 238-247.
    19. Adam Rose & Brandt Stevens & Jae Edmonds & Marshall Wise, 1998. "International Equity and Differentiation in Global Warming Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 12(1), pages 25-51, July.
    20. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    21. Harald Winkler & Randall Spalding-Fecher & Lwazikazi Tyani, 2002. "Comparing developing countries under potential carbon allocation schemes," Climate Policy, Taylor & Francis Journals, vol. 2(4), pages 303-318, December.
    22. Phylipsen, G J M & Bode, J W & Blok, K & Merkus, H & Metz, B, 1998. "A Triptych sectoral approach to burden differentiation; GHG emissions in the European bubble," Energy Policy, Elsevier, vol. 26(12), pages 929-943, October.
    23. Bretschger, Lucas, 2013. "Climate policy and equity principles: fair burden sharing in a dynamic world," Environment and Development Economics, Cambridge University Press, vol. 18(5), pages 517-536, October.
    24. Peng Li & Yaofu Ouyang, 2021. "Quantifying the role of technical progress towards China’s 2030 carbon intensity target," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 64(3), pages 379-398, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, P. & Wang, M., 2016. "Carbon dioxide emissions allocation: A review," Ecological Economics, Elsevier, vol. 125(C), pages 47-59.
    2. Zhu, Bangzhu & Jiang, Mingxing & He, Kaijian & Chevallier, Julien & Xie, Rui, 2018. "Allocating CO2 allowances to emitters in China: A multi-objective decision approach," Energy Policy, Elsevier, vol. 121(C), pages 441-451.
    3. Ni, Jinlan & Wei, Chu & Du, Limin, 2015. "Revealing the political decision toward Chinese carbon abatement: Based on equity and efficiency criteria," Energy Economics, Elsevier, vol. 51(C), pages 609-621.
    4. Guoyu Wang & Jinsheng Zhou, 2022. "Multiobjective Optimization of Carbon Emission Reduction Responsibility Allocation in the Open-Pit Mine Production Process against the Background of Peak Carbon Dioxide Emissions," Sustainability, MDPI, vol. 14(15), pages 1-21, August.
    5. Weidong Chen & Qing He, 2016. "Intersectoral burden sharing of CO 2 mitigation in China in 2020," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(1), pages 1-14, January.
    6. Tan, Xianchun & Cai, Xiaoli & Cheng, Yonglong & Yan, Hongshuo, 2024. "How to control China's total amount of carbon emissions? An analysis of provincial allowance demands," Energy, Elsevier, vol. 303(C).
    7. Yu, Shiwei & Wei, Yi-Ming & Wang, Ke, 2014. "Provincial allocation of carbon emission reduction targets in China: An approach based on improved fuzzy cluster and Shapley value decomposition," Energy Policy, Elsevier, vol. 66(C), pages 630-644.
    8. Shi, Wei & Li, Wei & Qiao, Fuwei & Wang, Weijuan & An, Yi & Zhang, Guowei, 2023. "An inter-provincial carbon quota study in China based on the contribution of clean energy to carbon reduction," Energy Policy, Elsevier, vol. 182(C).
    9. Yue-Jun Zhang & Jun-Fang Hao, 2015. "The allocation of carbon emission intensity reduction target by 2020 among provinces in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 921-937, November.
    10. Yong Bian & Zhi Yu & Xuelan Zeng & Jingchun Feng & Chao He, 2018. "Achieving China’s Long-Term Carbon Emission Abatement Targets: A Perspective from Regional Disparity," Sustainability, MDPI, vol. 10(11), pages 1-19, November.
    11. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Research on the peak of CO2 emissions in the developing world: Current progress and future prospect," Applied Energy, Elsevier, vol. 235(C), pages 186-203.
    12. Guo, Jin & Du, Limin & Wei, Chu, 2019. "Equity-efficiency trade-off in China's energy capping policy," Energy Policy, Elsevier, vol. 126(C), pages 57-65.
    13. Minxing Jiang & Bangzhu Zhu & Julien Chevallier & Rui Xie, 2018. "Allocating provincial CO2 quotas for the Chinese national carbon program," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(3), pages 457-479, July.
    14. den Elzen, Michel & Höhne, Niklas & van Vliet, Jasper, 2009. "Analysing comparable greenhouse gas mitigation efforts for Annex I countries," Energy Policy, Elsevier, vol. 37(10), pages 4114-4131, October.
    15. Kverndokk, Snorre & Rose, Adam, 2008. "Equity and Justice in Global Warming Policy," International Review of Environmental and Resource Economics, now publishers, vol. 2(2), pages 135-176, October.
    16. Han, Rong & Li, Jianglong & Guo, Zhi, 2022. "Optimal quota in China's energy capping policy in 2030 with renewable targets and sectoral heterogeneity," Energy, Elsevier, vol. 239(PA).
    17. Zhang, Da & Peng, Hantang & Zhang, Lin, 2023. "Share of polluting input as a sufficient statistic for burden sharing," Energy Economics, Elsevier, vol. 121(C).
    18. Kejia Yang & Yalin Lei & Weiming Chen & Lingna Liu, 2018. "Carbon dioxide emission reduction quota allocation study on Chinese provinces based on two-stage Shapley information entropy model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 321-335, March.
    19. Pan, Xunzhang & Teng, Fei & Ha, Yuejiao & Wang, Gehua, 2014. "Equitable Access to Sustainable Development: Based on the comparative study of carbon emission rights allocation schemes," Applied Energy, Elsevier, vol. 130(C), pages 632-640.
    20. Michel Elzen & Niklas Höhne & Markus Hagemann & Jasper Vliet & Detlef Vuuren, 2010. "Sharing developed countries’ post-2012 greenhouse gas emission reductions based on comparable efforts," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(5), pages 433-465, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:5:d:10.1007_s10668-023-03344-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.