IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v25y2023i12d10.1007_s10668-022-02653-4.html
   My bibliography  Save this article

Understanding the relation between the socio-economic development and CO2 emission of 76 contracting countries in The Paris Agreement

Author

Listed:
  • Yingying Zhang

    (Beihang University)

  • Yan Li

    (Shandong University)

  • Yigang Wei

    (Beihang University
    Beihang University
    Beijing Key Laboratory of Emergency Support Simulation Technologies for City Operation)

Abstract

This study aims to introduce a novel coupling coordination degree (CCD) model to evaluate the degree of coupling coordination between socio-economic development and CO2 emission of 76 contracting countries in The Paris Agreement. The efficiency of the novel CCD model is demonstrated by scenario analysis in the contracting countries during the period between 2005 and 2015 on the basis of the theory of environmental Kuznets curve. The following results are obtained. Firstly, the subjectivity of the traditional CCD model contaminates the robustness of the evaluation. Secondly, the novel CCD of contracting countries during the survey period ranged between approximately 0.35 and 0.4, which is in the overall development stage of low coordination. Thirdly, the novel CCD of the two systems at the global level is not symmetrical in spatial distribution, and the European continent is generally higher than the African, while other continents sit on an intermediate level. Lastly, the novel CCD between socio-economy and CO2 emission systems presents a positive correlation with regional resident income in groups with varied income levels. The findings of this research provide rich policy references for facilitating global climate cooperation by balancing socio-economic development with CO2 emission mitigation.

Suggested Citation

  • Yingying Zhang & Yan Li & Yigang Wei, 2023. "Understanding the relation between the socio-economic development and CO2 emission of 76 contracting countries in The Paris Agreement," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(12), pages 14131-14153, December.
  • Handle: RePEc:spr:endesu:v:25:y:2023:i:12:d:10.1007_s10668-022-02653-4
    DOI: 10.1007/s10668-022-02653-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-022-02653-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-022-02653-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lamla, Michael J., 2009. "Long-run determinants of pollution: A robustness analysis," Ecological Economics, Elsevier, vol. 69(1), pages 135-144, November.
    2. Fodha, Mouez & Zaghdoud, Oussama, 2010. "Economic growth and pollutant emissions in Tunisia: An empirical analysis of the environmental Kuznets curve," Energy Policy, Elsevier, vol. 38(2), pages 1150-1156, February.
    3. Zafar, Muhammad Wasif & Shahbaz, Muhammad & Sinha, Avik & Sengupta, Tuhin & Qin, Quande, 2020. "How Renewable Energy Consumption Contribute to Environmental Quality? The Role of Education in OECD Countries," MPRA Paper 100259, University Library of Munich, Germany, revised 08 May 2020.
    4. David I. Stern & Jeremy Dijk, 2017. "Economic growth and global particulate pollution concentrations," Climatic Change, Springer, vol. 142(3), pages 391-406, June.
    5. Wei, Yigang & Li, Yan & Wu, Meiyu & Li, Yingbo, 2019. "The decomposition of total-factor CO2 emission efficiency of 97 contracting countries in Paris Agreement," Energy Economics, Elsevier, vol. 78(C), pages 365-378.
    6. Huang, Bwo-Nung & Hwang, M.J. & Yang, C.W., 2008. "Causal relationship between energy consumption and GDP growth revisited: A dynamic panel data approach," Ecological Economics, Elsevier, vol. 67(1), pages 41-54, August.
    7. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    8. Yang, Guangfei & Sun, Tao & Wang, Jianliang & Li, Xianneng, 2015. "Modeling the nexus between carbon dioxide emissions and economic growth," Energy Policy, Elsevier, vol. 86(C), pages 104-117.
    9. Muhammad, Bashir, 2019. "Energy consumption, CO2 emissions and economic growth in developed, emerging and Middle East and North Africa countries," Energy, Elsevier, vol. 179(C), pages 232-245.
    10. Xie, Rui & Fang, Jiayu & Liu, Cenjie, 2017. "The effects of transportation infrastructure on urban carbon emissions," Applied Energy, Elsevier, vol. 196(C), pages 199-207.
    11. Hanif, Imran & Faraz Raza, Syed Muhammad & Gago-de-Santos, Pilar & Abbas, Qaiser, 2019. "Fossil fuels, foreign direct investment, and economic growth have triggered CO2 emissions in emerging Asian economies: Some empirical evidence," Energy, Elsevier, vol. 171(C), pages 493-501.
    12. Wei, Yigang & Gong, Ping & Zhang, Jianhong & Wang, Li, 2021. "Exploring public opinions on climate change policy in "Big Data Era"—A case study of the European Union Emission Trading System (EU-ETS) based on Twitter," Energy Policy, Elsevier, vol. 158(C).
    13. Song, Qijiao & Zhou, Nan & Liu, Tianle & Siehr, Stephanie A. & Qi, Ye, 2018. "Investigation of a “coupling model” of coordination between low-carbon development and urbanization in China," Energy Policy, Elsevier, vol. 121(C), pages 346-354.
    14. Liu, Xiaozi & Heilig, Gerhard K. & Chen, Junmiao & Heino, Mikko, 2007. "Interactions between economic growth and environmental quality in Shenzhen, China's first special economic zone," Ecological Economics, Elsevier, vol. 62(3-4), pages 559-570, May.
    15. Roca, Jordi & Padilla, Emilio & Farre, Mariona & Galletto, Vittorio, 2001. "Economic growth and atmospheric pollution in Spain: discussing the environmental Kuznets curve hypothesis," Ecological Economics, Elsevier, vol. 39(1), pages 85-99, October.
    16. Bismark Ameyaw & Li Yao, 2018. "Analyzing the Impact of GDP on CO 2 Emissions and Forecasting Africa’s Total CO 2 Emissions with Non-Assumption Driven Bidirectional Long Short-Term Memory," Sustainability, MDPI, vol. 10(9), pages 1-23, August.
    17. Liddle, Brantley, 2015. "What Are the Carbon Emissions Elasticities for Income and Population? Bridging STIRPAT and EKC via robust heterogeneous panel estimates," MPRA Paper 61304, University Library of Munich, Germany.
    18. Huang, Wenyang & Wang, Huiwen & Qin, Haotong & Wei, Yigang & Chevallier, Julien, 2022. "Convolutional neural network forecasting of European Union allowances futures using a novel unconstrained transformation method," Energy Economics, Elsevier, vol. 110(C).
    19. Kangyin Dong & Xiucheng Dong & Qingzhe Jiang, 2020. "How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels," The World Economy, Wiley Blackwell, vol. 43(6), pages 1665-1698, June.
    20. Liobikienė, Genovaitė & Butkus, Mindaugas, 2017. "Environmental Kuznets Curve of greenhouse gas emissions including technological progress and substitution effects," Energy, Elsevier, vol. 135(C), pages 237-248.
    21. Kasman, Adnan & Duman, Yavuz Selman, 2015. "CO2 emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: A panel data analysis," Economic Modelling, Elsevier, vol. 44(C), pages 97-103.
    22. Chen, Shaoqing & Chen, Bin, 2017. "Coupling of carbon and energy flows in cities: A meta-analysis and nexus modelling," Applied Energy, Elsevier, vol. 194(C), pages 774-783.
    23. Zhang, Yu & Zhang, Sufang, 2018. "The impacts of GDP, trade structure, exchange rate and FDI inflows on China's carbon emissions," Energy Policy, Elsevier, vol. 120(C), pages 347-353.
    24. AkbostancI, Elif & Türüt-AsIk, Serap & Tunç, G. Ipek, 2009. "The relationship between income and environment in Turkey: Is there an environmental Kuznets curve?," Energy Policy, Elsevier, vol. 37(3), pages 861-867, March.
    25. Zhao, Yabo & Wang, Shaojian & Ge, Yuejing & Liu, Qianqian & Liu, Xiaofeng, 2017. "The spatial differentiation of the coupling relationship between urbanization and the eco-environment in countries globally: A comprehensive assessment," Ecological Modelling, Elsevier, vol. 360(C), pages 313-327.
    26. Wenyang Huang & Huiwen Wang & Haotong Qin & Yigang Wei & Julien Chevallier, 2022. "Convolutional neural network forecasting of European Union allowances futures using a novel unconstrained transformation method," Post-Print halshs-04250297, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahbaz, Muhammad & Haouas, Ilham & Hoang, Thi Hong Van, 2019. "Economic growth and environmental degradation in Vietnam: Is the environmental Kuznets curve a complete picture?," Emerging Markets Review, Elsevier, vol. 38(C), pages 197-218.
    2. Daniel Armeanu & Georgeta Vintilă & Jean Vasile Andrei & Ştefan Cristian Gherghina & Mihaela Cristina Drăgoi & Cristian Teodor, 2018. "Exploring the link between environmental pollution and economic growth in EU-28 countries: Is there an environmental Kuznets curve?," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-28, May.
    3. Muhammad Shahbaz & Avik Sinha, 2019. "Environmental Kuznets curve for CO2emissions: a literature survey," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 46(1), pages 106-168, January.
    4. Shahbaz, Muhammad & Sinha, Avik, 2019. "Environmental Kuznets Curve for CO2 emission: A survey of empirical literature," MPRA Paper 100257, University Library of Munich, Germany, revised 2019.
    5. Hatem M'henni & Mohamed El Hedi Arouri & Adel Ben Youssef & Christophe Rault, 2011. "Income Level and Environmental Quality in The MENA Countries: Discussing the Environmental Kuznets Curve Hypothesis," Working Papers 587, Economic Research Forum, revised 05 Jan 2011.
    6. Charfeddine, Lanouar & Mrabet, Zouhair, 2017. "The impact of economic development and social-political factors on ecological footprint: A panel data analysis for 15 MENA countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 138-154.
    7. George Halkos & Iacovos Psarianos, 2016. "Exploring the effect of including the environment in the neoclassical growth model," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 18(3), pages 339-358, July.
    8. Baiardi Donatella, 2014. "Technological Progress and the Environmental Kuznets Curve in the Twenty Regions of Italy," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 14(4), pages 1501-1542, October.
    9. Le Hoang Phong, 2019. "Globalization, Financial Development, and Environmental Degradation in the Presence of Environmental Kuznets Curve: Evidence from ASEAN-5 Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 40-50.
    10. Seker, Fahri & Ertugrul, Hasan Murat & Cetin, Murat, 2015. "The impact of foreign direct investment on environmental quality: A bounds testing and causality analysis for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 347-356.
    11. Priscilla Massa-Sánchez & Luis Quintana-Romero & Ronny Correa-Quezada & María de la Cruz del Río-Rama, 2020. "Empirical Evidence in Ecuador between Economic Growth and Environmental Deterioration," Sustainability, MDPI, vol. 12(3), pages 1-20, January.
    12. Li, Li & Hong, Xuefei & Wang, Jun, 2020. "Evaluating the impact of clean energy consumption and factor allocation on China’s air pollution: A spatial econometric approach," Energy, Elsevier, vol. 195(C).
    13. Sofien, Tiba & Omri, Anis, 2016. "Literature survey on the relationships between energy variables, environment and economic growth," MPRA Paper 82555, University Library of Munich, Germany, revised 14 Sep 2016.
    14. Acheampong, Alex O., 2018. "Economic growth, CO2 emissions and energy consumption: What causes what and where?," Energy Economics, Elsevier, vol. 74(C), pages 677-692.
    15. Wu, Jian-Xin & He, Ling-Yun & Zhang, ZhongXiang, 2019. "Does China Fall into Poverty-Environment Traps? Evidence from Long-term Income Dynamics and Urban Air Pollution," ETA: Economic Theory and Applications 285027, Fondazione Eni Enrico Mattei (FEEM).
    16. Zhang, Wenwen & Chiu, Yi-Bin, 2020. "Do country risks influence carbon dioxide emissions? A non-linear perspective," Energy, Elsevier, vol. 206(C).
    17. Shahbaz, Muhammad & Sbia, Rashid & Hamdi, Helmi, 2013. "The Environmental cost of Skiing in the Desert? Evidence from Cointegration with unknown Structural breaks in UAE," MPRA Paper 48007, University Library of Munich, Germany, revised 03 Jul 2013.
    18. Priyagus Priyagus, 2021. "Does Economic Growth Efficient and Environmental Safety? The Case of Transportation Sector in Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 365-372.
    19. Guglielmo Maria Caporale & Gloria Claudio-Quiroga & Luis A. Gil-Alana, 2019. "CO2 Emissions and GDP: Evidence from China," CESifo Working Paper Series 7881, CESifo.
    20. Kais Saidi & Sami Hammami, 2016. "Economic growth, energy consumption and carbone dioxide emissions: recent evidence from panel data analysis for 58 countries," Quality & Quantity: International Journal of Methodology, Springer, vol. 50(1), pages 361-383, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:25:y:2023:i:12:d:10.1007_s10668-022-02653-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.