IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

An approximate dynamic programming framework for modeling global climate policy under decision-dependent uncertainty

  • Mort Webster

    ()

  • Nidhi Santen

    ()

  • Panos Parpas

    ()

Registered author(s):

    Analyses of global climate policy as a sequential decision under uncertainty have been severely restricted by dimensionality and computational burdens. Therefore, they have limited the number of decision stages, discrete actions, or number and type of uncertainties considered. In particular, two common simplifications are the use of two-stage models to approximate a multi-stage problem and exogenous formulations for inherently endogenous or decision-dependent uncertainties (in which the shock at time t+1 depends on the decision made at time t). In this paper, we present a stochastic dynamic programming formulation of the Dynamic Integrated Model of Climate and the Economy (DICE), and the application of approximate dynamic programming techniques to numerically solve for the optimal policy under uncertain and decision-dependent technological change in a multi-stage setting. We compare numerical results using two alternative value function approximation approaches, one parametric and one non-parametric. We show that increasing the variance of a symmetric mean-preserving uncertainty in abatement costs leads to higher optimal first-stage emission controls, but the effect is negligible when the uncertainty is exogenous. In contrast, the impact of decision-dependent cost uncertainty, a crude approximation of technology R&D, on optimal control is much larger, leading to higher control rates (lower emissions). Further, we demonstrate that the magnitude of this effect grows with the number of decision stages represented, suggesting that for decision-dependent phenomena, the conventional two-stage approximation will lead to an underestimate of the effect of uncertainty. Copyright Springer-Verlag 2012

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://hdl.handle.net/10.1007/s10287-012-0147-1
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Springer in its journal Computational Management Science.

    Volume (Year): 9 (2012)
    Issue (Month): 3 (August)
    Pages: 339-362

    as
    in new window

    Handle: RePEc:spr:comgts:v:9:y:2012:i:3:p:339-362
    Contact details of provider: Web page: http://www.springerlink.com/link.asp?id=111894

    Order Information: Web: http://link.springer.de/orders.htm

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Crost, Benjamin & Traeger, Christian P., 2010. "Risk and aversion in the integrated assessment of climate change," CUDARE Working Paper Series 1104R, University of California at Berkeley, Department of Agricultural and Resource Economics and Policy, revised Jul 2011.
    2. Gerst, Michael D. & Howarth, Richard B. & Borsuk, Mark E., 2010. "Accounting for the risk of extreme outcomes in an integrated assessment of climate change," Energy Policy, Elsevier, vol. 38(8), pages 4540-4548, August.
    3. William D. Nordhaus & David Popp, 1997. "What is the Value of Scientific Knowledge? An Application to Global Warming Using the PRICE Model," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 1-45.
    4. Donald L. Keefer & Samuel E. Bodily, 1983. "Three-Point Approximations for Continuous Random Variables," Management Science, INFORMS, vol. 29(5), pages 595-609, May.
    5. Scott, Michael J. & Sands, Ronald D. & Edmonds, Jae & Liebetrau, Albert M. & Engel, David W., 1999. "Uncertainty in integrated assessment models: modeling with MiniCAM 1.0," Energy Policy, Elsevier, vol. 27(14), pages 855-879, December.
    6. Leach, Andrew J., 2007. "The climate change learning curve," Journal of Economic Dynamics and Control, Elsevier, vol. 31(5), pages 1728-1752, May.
    7. Kolstad, Charles D., 1996. "Learning and Stock Effects in Environmental Regulation: The Case of Greenhouse Gas Emissions," Journal of Environmental Economics and Management, Elsevier, vol. 31(1), pages 1-18, July.
    8. David Popp & Richard G. Newell & Adam B. Jaffe, 2009. "Energy, the Environment, and Technological Change," NBER Working Papers 14832, National Bureau of Economic Research, Inc.
    9. Alan S. Manne & Richard G. Richels, 1994. "The Costs of Stabilizing Global CO2 Emissions: A Probabilistic Analysis Based on Expert Judgments," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 31-56.
    10. Mort Webster, 2002. "The Curious Role of "Learning" in Climate Policy: Should We Wait for More Data?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 97-119.
    11. Kelly, David L. & Kolstad, Charles D., 1999. "Bayesian learning, growth, and pollution," Journal of Economic Dynamics and Control, Elsevier, vol. 23(4), pages 491-518, February.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:9:y:2012:i:3:p:339-362. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn)

    or (Christopher F Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.