IDEAS home Printed from
   My bibliography  Save this article

Three-Point Approximations for Continuous Random Variables


  • Donald L. Keefer

    (Gulf Oil Corporation, Pittsburgh)

  • Samuel E. Bodily

    (University of Virginia, on leave at the University of Washington)


This paper compares a number of approximations used to estimate means and variances of continuous random variables and/or to serve as substitutes for the probability distributions of such variables, with particular emphasis on three-point approximations. Numerical results from estimating means and variances of a set of beta distributions indicate surprisingly large differences in accuracy among approximations in current use, with some of the most popular ones such as the PERT and triangular-density-function approximations faring poorly. A simple new three-point approximation, which is a straightforward extension of earlier work by Pearson and Tukey, outperforms the others significantly in these tests, and also performs well in related multivariate tests involving the Dirichlet family of distributions. It offers an attractive alternative to currently used approximations in a variety of applications.

Suggested Citation

  • Donald L. Keefer & Samuel E. Bodily, 1983. "Three-Point Approximations for Continuous Random Variables," Management Science, INFORMS, vol. 29(5), pages 595-609, May.
  • Handle: RePEc:inm:ormnsc:v:29:y:1983:i:5:p:595-609

    Download full text from publisher

    File URL:
    Download Restriction: no


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:29:y:1983:i:5:p:595-609. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.