Cryptocurrency volatility forecasting: What can we learn from the first wave of the COVID-19 outbreak?
Author
Abstract
Suggested Citation
DOI: 10.1007/s10479-021-04116-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007.
"Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility,"
The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2005. "Roughing it Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility," NBER Working Papers 11775, National Bureau of Economic Research, Inc.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility," CREATES Research Papers 2007-18, Department of Economics and Business Economics, Aarhus University.
- Amélie Charles & Olivier Darné, 2019.
"Volatility estimation for Bitcoin: Replication and robustness,"
International Economics, CEPII research center, issue 157, pages 23-32.
- Charles, Amélie & Darné, Olivier, 2019. "Volatility estimation for Bitcoin: Replication and robustness," International Economics, Elsevier, vol. 157(C), pages 23-32.
- Olivier Darné & Amélie Charles, 2019. "Volatility estimation for Bitcoin: Replication and robustness," Post-Print hal-01941102, HAL.
- Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005.
"A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data,"
Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
- Lan Zhang & Per A. Mykland & Yacine Ait-Sahalia, 2003. "A Tale of Two Time Scales: Determining Integrated Volatility with Noisy High Frequency Data," NBER Working Papers 10111, National Bureau of Economic Research, Inc.
- Sensoy, Ahmet, 2019. "The inefficiency of Bitcoin revisited: A high-frequency analysis with alternative currencies," Finance Research Letters, Elsevier, vol. 28(C), pages 68-73.
- Harry Markowitz, 1952. "The Utility of Wealth," Journal of Political Economy, University of Chicago Press, vol. 60(2), pages 151-151.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Xin Huang & George Tauchen, 2005. "The Relative Contribution of Jumps to Total Price Variance," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 456-499.
- Mnif, Emna & Jarboui, Anis & Mouakhar, Khaireddine, 2020. "How the cryptocurrency market has performed during COVID 19? A multifractal analysis," Finance Research Letters, Elsevier, vol. 36(C).
- Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
- Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
- Christian Conrad & Anessa Custovic & Eric Ghysels, 2018. "Long- and Short-Term Cryptocurrency Volatility Components: A GARCH-MIDAS Analysis," JRFM, MDPI, vol. 11(2), pages 1-12, May.
- Fredj Jawadi, Waël Louhichi, Hachmi Ben Ameur, and Zied Ftiti, 2019.
"Do Jumps and Co-jumps Improve Volatility Forecasting of Oil and Currency Markets?,"
The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
- Fredj Jawadi & Waël Louhichi & Hachmi Ben Ameur & Zied Ftiti, 2019. "Do Jumps and Co-jumps Improve Volatility Forecasting of Oil and Currency Markets?," The Energy Journal, , vol. 40(2_suppl), pages 131-156, December.
- Duc Huynh, Toan Luu & Burggraf, Tobias & Wang, Mei, 2020. "Gold, platinum, and expected Bitcoin returns," Journal of Multinational Financial Management, Elsevier, vol. 56(C).
- Erdinc Akyildirim & Ahmet Goncu & Ahmet Sensoy, 2021. "Prediction of cryptocurrency returns using machine learning," Annals of Operations Research, Springer, vol. 297(1), pages 3-36, February.
- Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
- Yu, Miao, 2019. "Forecasting Bitcoin volatility: The role of leverage effect and uncertainty," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
- Mirza Hedismarlina Yuneline, 2019. "Analysis of cryptocurrency’s characteristics in four perspectives," Journal of Asian Business and Economic Studies, Emerald Group Publishing Limited, vol. 26(2), pages 206-219, August.
- Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
- Andrew J. Patton & Kevin Sheppard, 2015. "Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility," The Review of Economics and Statistics, MIT Press, vol. 97(3), pages 683-697, July.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Balcilar, Mehmet & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2017.
"Can volume predict Bitcoin returns and volatility? A quantiles-based approach,"
Economic Modelling, Elsevier, vol. 64(C), pages 74-81.
- Mehmet Balcilar & Elie Bouri & Rangan Gupta & David Roubaud, 2017. "Can volume predict Bitcoin returns and volatility? A quantiles-based approach," Post-Print hal-02008551, HAL.
- Jessica Paule-Vianez & Camilo Prado-Román & Raúl Gómez-Martínez, 2020. "Economic policy uncertainty and Bitcoin. Is Bitcoin a safe-haven asset?," European Journal of Management and Business Economics, Emerald Group Publishing Limited, vol. 29(3), pages 347-363, March.
- Akyildirim, Erdinc & Corbet, Shaen & Katsiampa, Paraskevi & Kellard, Neil & Sensoy, Ahmet, 2020. "The development of Bitcoin futures: Exploring the interactions between cryptocurrency derivatives," Finance Research Letters, Elsevier, vol. 34(C).
- Cheikh, Nidhaleddine Ben & Zaied, Younes Ben & Chevallier, Julien, 2020. "Asymmetric volatility in cryptocurrency markets: New evidence from smooth transition GARCH models," Finance Research Letters, Elsevier, vol. 35(C).
- Aslan, Aylin & Sensoy, Ahmet, 2020. "Intraday efficiency-frequency nexus in the cryptocurrency markets," Finance Research Letters, Elsevier, vol. 35(C).
- Dehua Shen & Andrew Urquhart & Pengfei Wang, 2020. "Forecasting the volatility of Bitcoin: The importance of jumps and structural breaks," European Financial Management, European Financial Management Association, vol. 26(5), pages 1294-1323, November.
- Giot, Pierre & Laurent, Sébastien & Petitjean, Mikael, 2010.
"Trading activity, realized volatility and jumps,"
Journal of Empirical Finance, Elsevier, vol. 17(1), pages 168-175, January.
- GIOT, Pierre & LAURENT, Sébastien & PETITJEAN, Mikael, 2010. "Trading activity, realized volatility and jumps," LIDAM Reprints CORE 2223, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
- Dyhrberg, Anne Haubo, 2016. "Bitcoin, gold and the dollar – A GARCH volatility analysis," Finance Research Letters, Elsevier, vol. 16(C), pages 85-92.
- Zied Ftiti & Fredj Jawadi, 2019. "Forecasting Inflation Uncertainty in the United States and Euro Area," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 455-476, June.
- Catania, Leopoldo & Grassi, Stefano & Ravazzolo, Francesco, 2019. "Forecasting cryptocurrencies under model and parameter instability," International Journal of Forecasting, Elsevier, vol. 35(2), pages 485-501.
- Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
- Bollerslev, Tim & Li, Sophia Zhengzi & Zhao, Bingzhi, 2020. "Good Volatility, Bad Volatility, and the Cross Section of Stock Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(3), pages 751-781, May.
- Jeffrey Chu & Stephen Chan & Saralees Nadarajah & Joerg Osterrieder, 2017. "GARCH Modelling of Cryptocurrencies," JRFM, MDPI, vol. 10(4), pages 1-15, October.
- Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
- Lahmiri, Salim & Bekiros, Stelios, 2019. "Cryptocurrency forecasting with deep learning chaotic neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 35-40.
- Ftiti, Zied & Kablan, Sandrine & Guesmi, Khaled, 2016.
"What can we learn about commodity and credit cycles? Evidence from African commodity-exporting countries,"
Energy Economics, Elsevier, vol. 60(C), pages 313-324.
- Zied Ftiti & Sandrine Kablan & Khaled Guesmi, 2016. "What can we learn about commodity and credit cycles? Evidence from African commodity-exporting countries [Que pouvons nous apprendre sur les matières premières et les cycles de crédit? Evidence des," Post-Print hal-04281444, HAL.
- Ftiti, Zied & Ben Ameur, Hachmi & Louhichi, Waël, 2021. "Does non-fundamental news related to COVID-19 matter for stock returns? Evidence from Shanghai stock market," Economic Modelling, Elsevier, vol. 99(C).
- Aviral Kumar Tiwari & Satish Kumar & Rajesh Pathak, 2019. "Modelling the dynamics of Bitcoin and Litecoin: GARCH versus stochastic volatility models," Applied Economics, Taylor & Francis Journals, vol. 51(37), pages 4073-4082, August.
- Hui Xiao & Yiguo Sun, 2020. "Forecasting the Returns of Cryptocurrency: A Model Averaging Approach," JRFM, MDPI, vol. 13(11), pages 1-15, November.
- Adcock, Robert & Gradojevic, Nikola, 2019. "Non-fundamental, non-parametric Bitcoin forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Parthajit Kayal & Sumanjay Dutta, 2024. "Regime switching and causal network analysis of cryptocurrency volatility: evidence from pre-COVID and post-COVID analysis," Digital Finance, Springer, vol. 6(2), pages 319-340, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
- Lyócsa, Štefan & Molnár, Peter & Plíhal, Tomáš & Širaňová, Mária, 2020. "Impact of macroeconomic news, regulation and hacking exchange markets on the volatility of bitcoin," Journal of Economic Dynamics and Control, Elsevier, vol. 119(C).
- Yaojie Zhang & Mengxi He & Danyan Wen & Yudong Wang, 2022. "Forecasting Bitcoin volatility: A new insight from the threshold regression model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 633-652, April.
- Muhammad Anas & Syed Jawad Hussain Shahzad & Larisa Yarovaya, 2024. "The use of high-frequency data in cryptocurrency research: a meta-review of literature with bibliometric analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-31, December.
- Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023.
"The contribution of jump signs and activity to forecasting stock price volatility,"
Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
- , 2019. "The Contribution of Jump Signs and Activity to Forecasting Stock Price Volatility," Working Papers 1902, Federal Reserve Bank of Dallas, revised 17 Dec 2022.
- Ruijun Bu & Rodrigo Hizmeri & Marwan Izzeldin & Anthony Murphy & Mike G. Tsionas, 2021. "The Contribution of Jump Signs and Activity to Forecasting Stock Price Volatility," Working Papers 202109, University of Liverpool, Department of Economics.
- Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
- Yang Zhou & Chi Xie & Gang-Jin Wang & Jue Gong & You Zhu, 2025. "Forecasting cryptocurrency volatility: a novel framework based on the evolving multiscale graph neural network," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 11(1), pages 1-52, December.
- Hu, Junjie & Kuo, Weiyu & Härdle, Wolfgang Karl, 2019.
"Risk of Bitcoin Market: Volatility, Jumps, and Forecasts,"
IRTG 1792 Discussion Papers
2019-024, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Junjie Hu & Wolfgang Karl Hardle & Weiyu Kuo, 2019. "Risk of Bitcoin Market: Volatility, Jumps, and Forecasts," Papers 1912.05228, arXiv.org, revised Dec 2021.
- Elie Bouri & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2021.
"Forecasting Realized Volatility of Bitcoin: The Role of the Trade War,"
Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 29-53, January.
- Elie Bouri & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2020. "Forecasting Realized Volatility of Bitcoin: The Role of the Trade War," Working Papers 202003, University of Pretoria, Department of Economics.
- Skander Slim & Ibrahim Tabche & Yosra Koubaa & Mohamed Osman & Andreas Karathanasopoulos, 2023. "Forecasting realized volatility of Bitcoin: The informative role of price duration," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1909-1929, November.
- Yi, Yongsheng & He, Mengxi & Zhang, Yaojie, 2022. "Out-of-sample prediction of Bitcoin realized volatility: Do other cryptocurrencies help?," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
- Alessio Brini & Jimmie Lenz, 2024. "A Comparison of Cryptocurrency Volatility-benchmarking New and Mature Asset Classes," Papers 2404.04962, arXiv.org.
- Feng Ma & Chao Liang & Yuanhui Ma & M.I.M. Wahab, 2020. "Cryptocurrency volatility forecasting: A Markov regime‐switching MIDAS approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1277-1290, December.
- Riza Demirer & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2022.
"Risk aversion and the predictability of crude oil market volatility: A forecasting experiment with random forests,"
Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(8), pages 1755-1767, August.
- Riza Demirer & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2019. "Risk Aversion and the Predictability of Crude Oil Market Volatility: A Forecasting Experiment with Random Forests," Working Papers 201972, University of Pretoria, Department of Economics.
- Patton, Andrew J., 2011. "Data-based ranking of realised volatility estimators," Journal of Econometrics, Elsevier, vol. 161(2), pages 284-303, April.
- Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015.
"Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes,"
Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
- Kevin Sheppard & Lily Liu & Andrew J. Patton, 2013. "Does Anything Beat 5-Minute RV? A Comparison of Realized Measures Across Multiple Asset Classes," Economics Series Working Papers 645, University of Oxford, Department of Economics.
- Alessio Brini & Jimmie Lenz, 2024. "A comparison of cryptocurrency volatility-benchmarking new and mature asset classes," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-38, December.
- Li, Jia & Patton, Andrew J., 2018.
"Asymptotic inference about predictive accuracy using high frequency data,"
Journal of Econometrics, Elsevier, vol. 203(2), pages 223-240.
- Jia Li & Andrew J. Patton, 2013. "Asymptotic Inference about Predictive Accuracy Using High Frequency Data," Working Papers 13-27, Duke University, Department of Economics.
- Jiqian Wang & Feng Ma & Elie Bouri & Yangli Guo, 2023. "Which factors drive Bitcoin volatility: Macroeconomic, technical, or both?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 970-988, July.
- Bergsli, Lykke Øverland & Lind, Andrea Falk & Molnár, Peter & Polasik, Michał, 2022. "Forecasting volatility of Bitcoin," Research in International Business and Finance, Elsevier, vol. 59(C).
More about this item
Keywords
In-sample forecasting; Realized volatility; Out-of-sample forecasting; Semi-variances; signed jump;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:330:y:2023:i:1:d:10.1007_s10479-021-04116-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.