IDEAS home Printed from https://ideas.repec.org/a/spr/agrhuv/v42y2025i1d10.1007_s10460-024-10615-x.html
   My bibliography  Save this article

Precision agriculture and the future of agrarian labor in the US food system

Author

Listed:
  • Ayorinde Ogunyiola

    (Murray State University)

  • Ryan Stock

    (Northern Michigan University)

  • Maaz Gardezi

    (Virginia Tech)

Abstract

Precision Agriculture (PA) uses sensors, drones, and machine learning algorithms to provide farmers with site-specific information for targeted farm management decisions. These technological systems can reconfigure farm labor, replacing or displacing agrarian workers, especially unskilled, seasonal, hired, and migrant labor. Therefore, PA raises critical social questions that have implications for farmers’ autonomy and control over agrarian production systems. We critically examine the social consequences of PA through the theoretical lenses of accumulation by dispossession and the agrarian question of labor. We use data from six focus group discussions conducted during the Fall of 2019 in heterogeneous production systems in South Dakota and Vermont. We assert that agritech firms design PA technologies as accumulation strategies predicated on the dispossession of farmers’ autonomy and control over agrarian production systems. As such, PA is fundamentally reconfiguring the future of agrarian labor in the US food system.

Suggested Citation

  • Ayorinde Ogunyiola & Ryan Stock & Maaz Gardezi, 2025. "Precision agriculture and the future of agrarian labor in the US food system," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 42(1), pages 383-403, March.
  • Handle: RePEc:spr:agrhuv:v:42:y:2025:i:1:d:10.1007_s10460-024-10615-x
    DOI: 10.1007/s10460-024-10615-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10460-024-10615-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10460-024-10615-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Olena Ivus & Matthew Boland, 2015. "The employment and wage impact of broadband deployment in Canada," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 48(5), pages 1803-1830, December.
    2. Rebecca Schewe & Diana Stuart, 2015. "Diversity in agricultural technology adoption: How are automatic milking systems used and to what end?," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 32(2), pages 199-213, June.
    3. Ayorinde Ogunyiola & Maaz Gardezi & Sumit Vij, 2022. "Smallholder farmers’ engagement with climate smart agriculture in Africa: role of local knowledge and upscaling," Climate Policy, Taylor & Francis Journals, vol. 22(4), pages 411-426, April.
    4. Carbonell, Isabelle M., 2016. "The ethics of big data in big agriculture," Internet Policy Review: Journal on Internet Regulation, Alexander von Humboldt Institute for Internet and Society (HIIG), Berlin, vol. 5(1), pages 1-13.
    5. Keith H Coble & Ashok K Mishra & Shannon Ferrell & Terry Griffin, 2018. "Big Data in Agriculture: A Challenge for the Future," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 40(1), pages 79-96.
    6. Daron Acemoglu & Pascual Restrepo, 2018. "Artificial Intelligence, Automation and Work," Boston University - Department of Economics - Working Papers Series dp-298, Boston University - Department of Economics.
    7. Philip Mcmichael, 2009. "Contemporary Contradictions of the Global Development Project: geopolitics, global ecology and the ‘development climate’," Third World Quarterly, Taylor & Francis Journals, vol. 30(1), pages 247-262.
    8. Claire Brown & Áine Regan & Simone van der Burg, 2023. "Farming futures: Perspectives of Irish agricultural stakeholders on data sharing and data governance," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 40(2), pages 565-580, June.
    9. Eastwood, C.R. & Chapman, D.F. & Paine, M.S., 2012. "Networks of practice for co-construction of agricultural decision support systems: Case studies of precision dairy farms in Australia," Agricultural Systems, Elsevier, vol. 108(C), pages 10-18.
    10. Schimmelpfennig, David, 2016. "Farm Profits and Adoption of Precision Agriculture," Economic Research Report 249773, United States Department of Agriculture, Economic Research Service.
    11. David Harvey, 2007. "Neoliberalism as Creative Destruction," The ANNALS of the American Academy of Political and Social Science, , vol. 610(1), pages 21-44, March.
    12. Steven A. Wolf & Frederick H. Buttel, 1996. "The Political Economy of Precision Farming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(5), pages 1269-1274.
    13. Ayorinde Ogunyiola & Maaz Gardezi, 2022. "Restoring sense out of disorder? Farmers’ changing social identities under big data and algorithms," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(4), pages 1451-1464, December.
    14. Wolfert, Sjaak & Ge, Lan & Verdouw, Cor & Bogaardt, Marc-Jeroen, 2017. "Big Data in Smart Farming – A review," Agricultural Systems, Elsevier, vol. 153(C), pages 69-80.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emily Duncan & Alesandros Glaros & Dennis Z. Ross & Eric Nost, 2021. "New but for whom? Discourses of innovation in precision agriculture," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 38(4), pages 1181-1199, December.
    2. Omar Abu Hassim & Ismah Osman & Asmah Awal & Fhaisol Mat Amin, 2024. "Navigating the Path to Equitable and Sustainable Digital Agriculture among Small Farmers in Malaysia: A Comprehensive Review," Information Management and Business Review, AMH International, vol. 16(2), pages 173-188.
    3. Ayorinde Ogunyiola & Maaz Gardezi, 2022. "Restoring sense out of disorder? Farmers’ changing social identities under big data and algorithms," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(4), pages 1451-1464, December.
    4. Barituka Bekee & Michelle S. Segovia & Corinne Valdivia, 2024. "Adoption of smart farm networks: a translational process to inform digital agricultural technologies," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 41(4), pages 1573-1590, December.
    5. Ciliberti, Stefano & Frascarelli, Angelo & Polenzani, Bianca & Brunori, Gianluca & Martino, Gaetano, 2024. "Digitalisation strategies in the agri-food system: The case of PDO Parmigiano Reggiano," Agricultural Systems, Elsevier, vol. 218(C).
    6. Édson Luis Bolfe & Lúcio André de Castro Jorge & Ieda Del’Arco Sanches & Ariovaldo Luchiari Júnior & Cinthia Cabral da Costa & Daniel de Castro Victoria & Ricardo Yassushi Inamasu & Célia Regina Grego, 2020. "Precision and Digital Agriculture: Adoption of Technologies and Perception of Brazilian Farmers," Agriculture, MDPI, vol. 10(12), pages 1-16, December.
    7. Robert Finger, 2023. "Digital innovations for sustainable and resilient agricultural systems," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 50(4), pages 1277-1309.
    8. Ingram, Julie & Maye, Damian & Bailye, Clive & Barnes, Andrew & Bear, Christopher & Bell, Matthew & Cutress, David & Davies, Lynfa & de Boon, Auvikki & Dinnie, Liz & Gairdner, Julian & Hafferty, Caitl, 2022. "What are the priority research questions for digital agriculture?," Land Use Policy, Elsevier, vol. 114(C).
    9. Schnebelin, Éléonore, 2022. "Linking the diversity of ecologisation models to farmers' digital use profiles," Ecological Economics, Elsevier, vol. 196(C).
    10. Oksana Hrynevych & Miguel Blanco Canto & Mercedes Jiménez García, 2022. "Tendencies of Precision Agriculture in Ukraine: Disruptive Smart Farming Tools as Cooperation Drivers," Agriculture, MDPI, vol. 12(5), pages 1-15, May.
    11. Hidalgo, Francisco & Quiñones-Ruiz, Xiomara F. & Birkenberg, Athena & Daum, Thomas & Bosch, Christine & Hirsch, Patrick & Birner, Regina, 2023. "Digitalization, sustainability, and coffee. Opportunities and challenges for agricultural development," Agricultural Systems, Elsevier, vol. 208(C).
    12. Madhu Khanna & Shady S. Atallah & Saurajyoti Kar & Bijay Sharma & Linghui Wu & Chengzheng Yu & Girish Chowdhary & Chinmay Soman & Kaiyu Guan, 2022. "Digital transformation for a sustainable agriculture in the United States: Opportunities and challenges," Agricultural Economics, International Association of Agricultural Economists, vol. 53(6), pages 924-937, November.
    13. Balaine, Lorraine & Dillon, Emma J. & Läpple, Doris & Lynch, John, 2020. "Can technology help achieve sustainable intensification? Evidence from milk recording on Irish dairy farms," Land Use Policy, Elsevier, vol. 92(C).
    14. Mark Ryan & Josephina Antoniou & Laurence Brooks & Tilimbe Jiya & Kevin Macnish & Bernd Stahl, 2020. "The Ethical Balance of Using Smart Information Systems for Promoting the United Nations’ Sustainable Development Goals," Sustainability, MDPI, vol. 12(12), pages 1-22, June.
    15. Kumar, Parveen & Hendriks, Tim & Panoutsopoulos, Hercules & Brewster, Christopher, 2024. "Investigating FAIR data principles compliance in horizon 2020 funded Agri-food and rural development multi-actor projects," Agricultural Systems, Elsevier, vol. 214(C).
    16. Jérémie Forney & Angga Dwiartama & Dana Bentia, 2023. "Everyday digitalization in food and agriculture: Introduction to the symposium," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 40(2), pages 417-421, June.
    17. Langer, Greta & Schukat, Sirkka, 2022. "Die Einstellung deutscher Milchviehhalter gegenüber dem Internet der Dinge," 62nd Annual Conference, Stuttgart, Germany, September 7-9, 2022 329592, German Association of Agricultural Economists (GEWISOLA).
    18. Julie Guthman & Michaelanne Butler, 2023. "Fixing food with a limited menu: on (digital) solutionism in the agri-food tech sector," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 40(3), pages 835-848, September.
    19. Jennifer Clapp & Sarah-Louise Ruder, 2020. "Precision Technologies for Agriculture: Digital Farming, Gene-EditedCrops, and the Politics of Sustainability," Global Environmental Politics, MIT Press, vol. 20(3), pages 49-69, August.
    20. Newton, Joanna E. & Nettle, Ruth & Pryce, Jennie E., 2020. "Farming smarter with big data: Insights from the case of Australia's national dairy herd milk recording scheme," Agricultural Systems, Elsevier, vol. 181(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:agrhuv:v:42:y:2025:i:1:d:10.1007_s10460-024-10615-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.