IDEAS home Printed from https://ideas.repec.org/a/sae/iimkoz/v3y2014i2p123-133.html
   My bibliography  Save this article

Energy Consumption Response to Climate Change: Policy Options for India

Author

Listed:
  • K. Narayanan

    (K. Narayanan, Institute Chair Professor, Department of Humanities and Social Sciences, Indian Institute of Technology Bombay, Powai, Mumbai, India. E-mail: knn@iitb.ac.in)

  • Santosh K. Sahu

    (Santosh K. Sahu, Assistant Professor, Madras School of Economics, Gandhi Mandampam Road, Kottur, Chennai, India. E-mail: santosh@mse.ac.in)

Abstract

In this article, the contributions of energy use to the climate variation debates are explored. Analyses based on secondary data depict that global fossil fuel use has increased and dominated world energy consumption and supply which is quite similar to the Indian case. This increase in the global energy use has resulted in higher emissions. To account for the changes in carbon dioxide (CO 2 ) emission, this article follows an index decomposition analysis using data from PROWESS database of the Center for Monitoring Indian Economy (CMIE). Two factors are considered to account for the changes in emission intensity of Indian economy: (i) shift in output among three sectors of the India economy (Agriculture, Service and Manufacturing) and (ii) structural change due to change in aggregate output with respect to emissions change. Based on the estimates, we conclude that structural changes in the Indian economy from 1991 to 2007 played important major driving factor in reducing emissions compared to output shifts across sectors. Based on the findings and international experiences, few policy options for Indian economy, such as, energy pricing reforms, promoting investment in renewable energy technologies and creating public environmental awareness, are further suggested.

Suggested Citation

  • K. Narayanan & Santosh K. Sahu, 2014. "Energy Consumption Response to Climate Change: Policy Options for India," IIM Kozhikode Society & Management Review, , vol. 3(2), pages 123-133, July.
  • Handle: RePEc:sae:iimkoz:v:3:y:2014:i:2:p:123-133
    DOI: 10.1177/2277975214544014
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/2277975214544014
    Download Restriction: no

    File URL: https://libkey.io/10.1177/2277975214544014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Feng Dong & Ruyin Long & Hong Chen & Xiaohui Li & Qingliang Yang, 2013. "Factors Affecting Regional Per-Capita Carbon Emissions in China Based on an LMDI Factor Decomposition Model," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-10, December.
    2. Michael Spence, 2009. "Climate Change, Mitigation, and Developing Country Growth," World Bank Publications - Books, The World Bank Group, number 28022, December.
    3. repec:idb:brikps:18658 is not listed on IDEAS
    4. Shahbaz, Muhammad & Farhani, Sahbi & Ozturk, Ilhan, 2013. "Coal Consumption, Industrial Production and CO2 Emissions in China and India," MPRA Paper 50618, University Library of Munich, Germany, revised 12 Oct 2013.
    5. Liu, Na & Ang, B.W., 2007. "Factors shaping aggregate energy intensity trend for industry: Energy intensity versus product mix," Energy Economics, Elsevier, vol. 29(4), pages 609-635, July.
    6. Cao, Xia, 2003. "Climate change and energy development: implications for developing countries," Resources Policy, Elsevier, vol. 29(1-2), pages 61-67.
    7. Kyle W. Knight & Juliet B. Schor, 2014. "Economic Growth and Climate Change: A Cross-National Analysis of Territorial and Consumption-Based Carbon Emissions in High-Income Countries," Sustainability, MDPI, vol. 6(6), pages 1-10, June.
    8. Quadrelli, Roberta & Peterson, Sierra, 2007. "The energy-climate challenge: Recent trends in CO2 emissions from fuel combustion," Energy Policy, Elsevier, vol. 35(11), pages 5938-5952, November.
    9. AkbostancI, Elif & Tunç, Gül Ipek & Türüt-AsIk, Serap, 2011. "CO2 emissions of Turkish manufacturing industry: A decomposition analysis," Applied Energy, Elsevier, vol. 88(6), pages 2273-2278, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yasmeen, Rizwana & Yao, Xing & Ul Haq Padda, Ihtsham & Shah, Wasi Ul Hassan & Jie, Wanchen, 2022. "Exploring the role of solar energy and foreign direct investment for clean environment: Evidence from top 10 solar energy consuming countries," Renewable Energy, Elsevier, vol. 185(C), pages 147-158.
    2. An, Hui & Xu, Jianjun & Ma, Xuejiao, 2020. "Does technological progress and industrial structure reduce electricity consumption? Evidence from spatial and heterogeneity analysis," Structural Change and Economic Dynamics, Elsevier, vol. 52(C), pages 206-220.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Narayanan, K. & Sahu, Santosh Kumar, 2012. "Energy Consumption Response to Climate Change under Globalization: Options for India," MPRA Paper 36366, University Library of Munich, Germany.
    2. Xu, Bin & Lin, Boqiang, 2015. "How industrialization and urbanization process impacts on CO2 emissions in China: Evidence from nonparametric additive regression models," Energy Economics, Elsevier, vol. 48(C), pages 188-202.
    3. Inglesi-Lotz, Roula & Blignaut, James N., 2011. "South Africa’s electricity consumption: A sectoral decomposition analysis," Applied Energy, Elsevier, vol. 88(12), pages 4779-4784.
    4. Usenobong F. Akpan & Godwin E. Akpan, 2012. "The Contribution of Energy Consumption to Climate Change:A Feasible Policy Direction," International Journal of Energy Economics and Policy, Econjournals, vol. 2(1), pages 21-33.
    5. Liu, Hong & Wang, Chang & Tian, Meiyu & Wen, Fenghua, 2019. "Analysis of regional difference decomposition of changes in energy consumption in China during 1995–2015," Energy, Elsevier, vol. 171(C), pages 1139-1149.
    6. Mulder, Peter & de Groot, Henri L.F. & Pfeiffer, Birte, 2014. "Dynamics and determinants of energy intensity in the service sector: A cross-country analysis, 1980–2005," Ecological Economics, Elsevier, vol. 100(C), pages 1-15.
    7. Nicole A. MATHYS & Jaime DE MELO, 2010. "Trade and Climate Change: The Challenges Ahead," Working Papers P14, FERDI.
    8. Fanelli, Emanuele & Viggiano, Annarita & Braccio, Giacobbe & Magi, Vinicio, 2014. "On laminar flame speed correlations for H2/CO combustion in premixed spark ignition engines," Applied Energy, Elsevier, vol. 130(C), pages 166-180.
    9. repec:ipg:wpaper:2014-546 is not listed on IDEAS
    10. Karimu, Amin & Brännlund, Runar & Lundgren, Tommy & Söderholm, Patrik, 2017. "Energy intensity and convergence in Swedish industry: A combined econometric and decomposition analysis," Energy Economics, Elsevier, vol. 62(C), pages 347-356.
    11. Kaivo-oja, J. & Luukkanen, J. & Panula-Ontto, J. & Vehmas, J. & Chen, Y. & Mikkonen, S. & Auffermann, B., 2014. "Are structural change and modernisation leading to convergence in the CO2 economy? Decomposition analysis of China, EU and USA," Energy, Elsevier, vol. 72(C), pages 115-125.
    12. Iorember, Paul Terhemba & Usman, Ojonugwa & Jelilov, Gylych, 2019. "Asymmetric Effects of Renewable Energy Consumption, Trade Openness and Economic Growth on Environmental Quality in Nigeria and South Africa," MPRA Paper 96333, University Library of Munich, Germany, revised 2019.
    13. Norman, Jonathan B., 2017. "Measuring improvements in industrial energy efficiency: A decomposition analysis applied to the UK," Energy, Elsevier, vol. 137(C), pages 1144-1151.
    14. Mattoo, Aaditya & Subramanian, Arvind, 2012. "Equity in Climate Change: An Analytical Review," World Development, Elsevier, vol. 40(6), pages 1083-1097.
    15. Yu, Shiwei & Wei, Yi-Ming & Guo, Haixiang & Ding, Liping, 2014. "Carbon emission coefficient measurement of the coal-to-power energy chain in China," Applied Energy, Elsevier, vol. 114(C), pages 290-300.
    16. Kyeongseok Kim & Ji-Sung Kim, 2018. "Economic Assessment of Flood Control Facilities under Climate Uncertainty: A Case of Nakdong River, South Korea," Sustainability, MDPI, vol. 10(2), pages 1-17, January.
    17. Opoku, Eric Evans Osei & Boachie, Micheal Kofi, 2020. "The environmental impact of industrialization and foreign direct investment," Energy Policy, Elsevier, vol. 137(C).
    18. Bermudez, Bladimir Carrillo & Santos Branco, Danyelle Karine & Trujillo, Juan Carlos & de Lima, Joao Eustaquio, 2015. "Deforestation and Infant Health: Evidence from an Environmental Conservation Policy in Brazil," 2015 Conference, August 9-14, 2015, Milan, Italy 229064, International Association of Agricultural Economists.
    19. Ma, Chunbo, 2014. "A multi-fuel, multi-sector and multi-region approach to index decomposition: An application to China's energy consumption 1995–2010," Energy Economics, Elsevier, vol. 42(C), pages 9-16.
    20. Ionica Oncioiu & Anca Gabriela Petrescu & Eugenia Grecu & Marius Petrescu, 2017. "Optimizing the Renewable Energy Potential: Myth or Future Trend in Romania," Energies, MDPI, vol. 10(6), pages 1-14, May.
    21. Aprea, Ciro & Maiorino, Angelo, 2011. "An experimental investigation of the global environmental impact of the R22 retrofit with R422D," Energy, Elsevier, vol. 36(2), pages 1161-1170.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:iimkoz:v:3:y:2014:i:2:p:123-133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.