IDEAS home Printed from https://ideas.repec.org/a/sae/evarev/v45y2021i1-2p3-33.html
   My bibliography  Save this article

Neural Networks to Estimate Generalized Propensity Scores for Continuous Treatment Doses

Author

Listed:
  • Zachary K. Collier
  • Walter L. Leite
  • Allison Karpyn

Abstract

Background: The generalized propensity score (GPS) addresses selection bias due to observed confounding variables and provides a means to demonstrate causality of continuous treatment doses with propensity score analyses. Estimating the GPS with parametric models obliges researchers to meet improbable conditions such as correct model specification, normal distribution of variables, and large sample sizes. Objectives: The purpose of this Monte Carlo simulation study is to examine the performance of neural networks as compared to full factorial regression models to estimate GPS in the presence of Gaussian and skewed treatment doses and small to moderate sample sizes. Research design: A detailed conceptual introduction of neural networks is provided, as well as an illustration of selection of hyperparameters to estimate GPS. An example from public health and nutrition literature uses residential distance as a treatment variable to illustrate how neural networks can be used in a propensity score analysis to estimate a dose–response function of grocery spending behaviors. Results: We found substantially higher correlations and lower mean squared error values after comparing true GPS with the scores estimated by neural networks. The implication is that more selection bias was removed using GPS estimated with neural networks than using GPS estimated with classical regression. Conclusions: This study proposes a new methodological procedure, neural networks, to estimate GPS. Neural networks are not sensitive to the assumptions of linear regression and other parametric models and have been shown to be a contender against parametric approaches to estimate propensity scores for continuous treatments.

Suggested Citation

  • Zachary K. Collier & Walter L. Leite & Allison Karpyn, 2021. "Neural Networks to Estimate Generalized Propensity Scores for Continuous Treatment Doses," Evaluation Review, , vol. 45(1-2), pages 3-33, February.
  • Handle: RePEc:sae:evarev:v:45:y:2021:i:1-2:p:3-33
    DOI: 10.1177/0193841X21992199
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0193841X21992199
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0193841X21992199?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Arpino, Bruno & Mealli, Fabrizia, 2011. "The specification of the propensity score in multilevel observational studies," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1770-1780, April.
    2. Noémi Kreif & Richard Grieve & Iván Díaz & David Harrison, 2015. "Evaluation of the Effect of a Continuous Treatment: A Machine Learning Approach with an Application to Treatment for Traumatic Brain Injury," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1213-1228, September.
    3. Kluve, Jochen & Schneider, Hilmar & Uhlendorff, Arne & Zhao, Zhong, 2007. "Evaluating Continuous Training Programs Using the Generalized Propensity Score," IZA Discussion Papers 3255, Institute of Labor Economics (IZA).
    4. Helmut Fryges, 2009. "The export-growth relationship: estimating a dose-response function," Applied Economics Letters, Taylor & Francis Journals, vol. 16(18), pages 1855-1859.
    5. Carlos A. Flores & Alfonso Flores-Lagunes & Arturo Gonzalez & Todd C. Neumann, 2012. "Estimating the Effects of Length of Exposure to Instruction in a Training Program: The Case of Job Corps," The Review of Economics and Statistics, MIT Press, vol. 94(1), pages 153-171, February.
    6. Imai, Kosuke & van Dyk, David A., 2005. "A Bayesian analysis of the multinomial probit model using marginal data augmentation," Journal of Econometrics, Elsevier, vol. 124(2), pages 311-334, February.
    7. Michela Bia & Alessandra Mattei, 2008. "A Stata package for the estimation of the dose–response function through adjustment for the generalized propensity score," Stata Journal, StataCorp LP, vol. 8(3), pages 354-373, September.
    8. Kosuke Imai & David A. van Dyk, 2004. "Causal Inference With General Treatment Regimes: Generalizing the Propensity Score," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 854-866, January.
    9. Jochen Kluve & Hilmar Schneider & Arne Uhlendorff & Zhong Zhao, 2012. "Evaluating continuous training programmes by using the generalized propensity score," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(2), pages 587-617, April.
    10. Ansong, David & Wu, Shiyou & Chowa, Gina A.N., 2015. "The role of child and parent savings in promoting expectations for university education among middle school students in Ghana: A propensity score analysis," Children and Youth Services Review, Elsevier, vol. 58(C), pages 265-273.
    11. Jochen Kluve & Hilmar Schneider & Arne Uhlendorff & Zhong Zhao, 2012. "Evaluating continuous training programmes by using the generalized propensity score," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(2), pages 587-617, April.
    12. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ida D'Attoma & Silvia Pacei, 2018. "Evaluating the Effects of Product Innovation on the Performance of European Firms by Using the Generalised Propensity Score," German Economic Review, Verein für Socialpolitik, vol. 19(1), pages 94-112, February.
    2. Tübbicke Stefan, 2022. "Entropy Balancing for Continuous Treatments," Journal of Econometric Methods, De Gruyter, vol. 11(1), pages 71-89, January.
    3. Serrano-Domingo, Guadalupe & Requena-Silvente, Francisco, 2013. "Re-examining the migration–trade link using province data: An application of the generalized propensity score," Economic Modelling, Elsevier, vol. 32(C), pages 247-261.
    4. Noémi Kreif & Richard Grieve & Iván Díaz & David Harrison, 2015. "Evaluation of the Effect of a Continuous Treatment: A Machine Learning Approach with an Application to Treatment for Traumatic Brain Injury," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1213-1228, September.
    5. Ruth T. Chepchirchir & Ibrahim Macharia & Alice W. Murage & Charles A. O. Midega & Zeyaur R. Khan, 2017. "Impact assessment of push-pull pest management on incomes, productivity and poverty among smallholder households in Eastern Uganda," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(6), pages 1359-1372, December.
    6. Ferrara, Antonella Rita & Dijkstra, Lewis & McCann, Philip & Nisticó, Rosanna, 2022. "The response of regional well-being to place-based policy interventions," Regional Science and Urban Economics, Elsevier, vol. 97(C).
    7. Kreif, N. & Grieve, R. & Díaz, I. & Harrison, D., 2014. "Health econometric evaluation of the effects of a continuous treatment: a machine learning approach," Health, Econometrics and Data Group (HEDG) Working Papers 14/19, HEDG, c/o Department of Economics, University of York.
    8. Hilal Atasoy & Rajiv D. Banker & Paul A. Pavlou, 2016. "On the Longitudinal Effects of IT Use on Firm-Level Employment," Information Systems Research, INFORMS, vol. 27(1), pages 6-26, March.
    9. Steckenleiter, Carina & Lechner, Michael & Pawlowski, Tim & Schüttoff, Ute, 2019. "Do local public expenditures on sports facilities affect sports participation in Germany?," Economics Working Paper Series 1905, University of St. Gallen, School of Economics and Political Science.
    10. Magrini, Emiliano & Montalbano, Pierluigi & Nenci, Silvia & Salvatici, Luca, 2014. "Agricultural trade distortions during recent international price spikes: what implications for food security?," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182726, European Association of Agricultural Economists.
    11. Juan M. Villa, 2014. "The length of exposure to antipoverty transfer programmes: what is the relevance for children's human capital formation?," Global Development Institute Working Paper Series 20614, GDI, The University of Manchester.
    12. Chepchirchir, R. & Macharia, I. & Murage, A.W. & Midega, C.A.O. & Khan, Z.R., 2016. "Impact assessment of push-pull technology on incomes, productivity and poverty among smallholder households in Eastern Uganda," 2016 Fifth International Conference, September 23-26, 2016, Addis Ababa, Ethiopia 246316, African Association of Agricultural Economists (AAAE).
    13. Michela Bia & Alessandra Mattei, 2012. "Assessing the effect of the amount of financial aids to Piedmont firms using the generalized propensity score," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(4), pages 485-516, November.
    14. Swen Kuh & Grace S. Chiu & Anton H. Westveld, 2020. "Latent Causal Socioeconomic Health Index," Papers 2009.12217, arXiv.org, revised Oct 2023.
    15. Finn McGuire & Noemi Kreif & Peter C. Smith, 2021. "The effect of distance on maternal institutional delivery choice: Evidence from Malawi," Health Economics, John Wiley & Sons, Ltd., vol. 30(9), pages 2144-2167, September.
    16. Flores-Lagunes, Alfonso & Gonzalez, Arturo & Neumann, Todd C., 2007. "Estimating the Effects of Length of Exposure to a Training Program: The Case of Job Corps," IZA Discussion Papers 2846, Institute of Labor Economics (IZA).
    17. Emiliano Magrini & Pierluigi Montalbano & Silvia Nenci & Luca Salvatici, 2017. "Agricultural (Dis)Incentives and Food Security: Is There a Link?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 99(4), pages 847-871.
    18. Egger, Peter H. & Ehrlich, Maximilian v. & Nelson, Douglas R., 2020. "The trade effects of skilled versus unskilled migration," Journal of Comparative Economics, Elsevier, vol. 48(2), pages 448-464.
    19. Chung Choe & Alfonso Flores-Lagunes & Sang-Jun Lee, 2015. "Do dropouts with longer training exposure benefit from training programs? Korean evidence employing methods for continuous treatments," Empirical Economics, Springer, vol. 48(2), pages 849-881, March.
    20. Martin Huber & Yu‐Chin Hsu & Ying‐Ying Lee & Layal Lettry, 2020. "Direct and indirect effects of continuous treatments based on generalized propensity score weighting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(7), pages 814-840, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:evarev:v:45:y:2021:i:1-2:p:3-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.