IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v42y2021i1p171-196.html
   My bibliography  Save this article

Locational (In)Efficiency of Renewable Energy Feed-In Into the Electricity Grid: A Spatial Regression Analysis

Author

Listed:
  • Tim Hofer
  • Reinhard Madlener

Abstract

This paper presents an econometric analysis of curtailment costs of renewable energy sources (RES) in Germany. The study aims at explaining and quantifying the regional variability of RES curtailment, which is a measure to relieve grid overstress by temporarily disconnecting RES from the electricity grid. We apply a Heckit sample selection model, which corrects bias from non-randomly selected samples. The selection equation estimates the probability of occurrence of RES curtailment in a region. The outcome equation corrects for cross-sectional dependence and quantifies the effect of RES on curtailment costs. The results show that wind energy systems connected to the distribution grid increase RES curtailment costs by 0.7% per MW (or 0.2% per GWh) in subregions that have experienced RES curtailment over the period 2015-2017. The implication of this finding is that policymakers should set price signals for renewables that consider the regional grid overstress, in order to mitigate the cost burden on consumers due to excess generation from RES.

Suggested Citation

  • Tim Hofer & Reinhard Madlener, 2021. "Locational (In)Efficiency of Renewable Energy Feed-In Into the Electricity Grid: A Spatial Regression Analysis," The Energy Journal, , vol. 42(1), pages 171-196, January.
  • Handle: RePEc:sae:enejou:v:42:y:2021:i:1:p:171-196
    DOI: 10.5547/01956574.42.1.thof
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/01956574.42.1.thof
    Download Restriction: no

    File URL: https://libkey.io/10.5547/01956574.42.1.thof?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kubik, M.L. & Coker, P.J. & Barlow, J.F. & Hunt, C., 2013. "A study into the accuracy of using meteorological wind data to estimate turbine generation output," Renewable Energy, Elsevier, vol. 51(C), pages 153-158.
    2. Luc Anselin & Sergio J. Rey, 2010. "Perspectives on Spatial Data Analysis," Advances in Spatial Science, in: Luc Anselin & Sergio J. Rey (ed.), Perspectives on Spatial Data Analysis, chapter 0, pages 1-20, Springer.
    3. Anselin, Luc, 2002. "Under the hood : Issues in the specification and interpretation of spatial regression models," Agricultural Economics, Blackwell, vol. 27(3), pages 247-267, November.
    4. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    5. Eicke, Anselm & Khanna, Tarun & Hirth, Lion, 2019. "Locational investment signals in electricity markets - How to steer the siting of new generation capacity?," EconStor Preprints 205237, ZBW - Leibniz Information Centre for Economics.
    6. J. Paul Elhorst, 2014. "Spatial Econometrics," SpringerBriefs in Regional Science, Springer, edition 127, number 978-3-642-40340-8, February.
    7. Arellano, Manuel, 2003. "Panel Data Econometrics," OUP Catalogue, Oxford University Press, number 9780199245291, Decembrie.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Höfer, Tim & Madlener, Reinhard, 2018. "Locational (In-)Efficiency of Renewable Power Generation Feeding in the Electricity Grid: A Spatial Regression Analysis," FCN Working Papers 13/2018, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised 01 Dec 2019.
    2. Sunak, Yasin & Madlener, Reinhard, 2016. "The impact of wind farm visibility on property values: A spatial difference-in-differences analysis," Energy Economics, Elsevier, vol. 55(C), pages 79-91.
    3. Godwin Kwabla Ekpe & Anna A. Klis, 2023. "Spillover Effects in Irrigated Agriculture from the Groundwater Commons," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 86(3), pages 469-507, November.
    4. Engelhorn, Thorsten & Müsgens, Felix, 2018. "How to estimate wind-turbine infeed with incomplete stock data: A general framework with an application to turbine-specific market values in Germany," Energy Economics, Elsevier, vol. 72(C), pages 542-557.
    5. Edoardo Baldoni & Roberto Esposti, 2021. "Agricultural Productivity in Space: an Econometric Assessment Based on Farm‐Level Data," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1525-1544, August.
    6. Marko Hočevar & Lovrenc Novak & Primož Drešar & Gašper Rak, 2022. "The Status Quo and Future of Hydropower in Slovenia," Energies, MDPI, vol. 15(19), pages 1-13, September.
    7. Giacomo De Giorgi & Michele Pellizzari & William Gui Woolston, 2012. "Class Size And Class Heterogeneity," Journal of the European Economic Association, European Economic Association, vol. 10(4), pages 795-830, August.
    8. Iván Fernández-Val & Martin Weidner, 2018. "Fixed Effects Estimation of Large-TPanel Data Models," Annual Review of Economics, Annual Reviews, vol. 10(1), pages 109-138, August.
    9. Johannes Blum & Klaus Gründler, 2020. "Political Stability and Economic Prosperity: Are Coups Bad for Growth?," CESifo Working Paper Series 8317, CESifo.
    10. Lukas Kriechbaum & Philipp Gradl & Romeo Reichenhauser & Thomas Kienberger, 2020. "Modelling Grid Constraints in a Multi-Energy Municipal Energy System Using Cumulative Exergy Consumption Minimisation," Energies, MDPI, vol. 13(15), pages 1-23, July.
    11. Marktanner Marcus & Makdisi Samir, 2008. "Development against All Odds? The Case of Lebanon," Review of Middle East Economics and Finance, De Gruyter, vol. 4(3), pages 101-133, September.
    12. Gabriel Burdí­n & Andrés Dean, 2009. "Las decisiones de empleo y salarios de cooperativas de trabajo y empresas capitalistas : evidencia para Uruguay en base a datos de panel," Documentos de Trabajo (working papers) 09-02, Instituto de Economía - IECON.
    13. Steinegger, Josef & Hammer, Andreas & Wallner, Stefan & Kienberger, Thomas, 2024. "Revolutionizing heat distribution: A method for harnessing industrial waste heat with supra-regional district heating networks," Applied Energy, Elsevier, vol. 372(C).
    14. Behrang Shirizadeh, Quentin Perrier, and Philippe Quirion, 2022. "How Sensitive are Optimal Fully Renewable Power Systems to Technology Cost Uncertainty?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    15. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    16. Maxime Fajeau, 2020. "The Adverse Effect of Finance on Growth," Working Papers hal-02549422, HAL.
    17. Hoderlein, Stefan & White, Halbert, 2012. "Nonparametric identification in nonseparable panel data models with generalized fixed effects," Journal of Econometrics, Elsevier, vol. 168(2), pages 300-314.
    18. Haoying Wang & Guohui Wu, 2022. "Modeling discrete choices with large fine-scale spatial data: opportunities and challenges," Journal of Geographical Systems, Springer, vol. 24(3), pages 325-351, July.
    19. García Cruz Gustavo Adolfo, 2008. "Informalidad regional en Colombia. Evidencia y Determinantes," Revista Desarrollo y Sociedad, Universidad de los Andes,Facultad de Economía, CEDE, February.
    20. Karlsson, Martin & Nilsson, Therese & Pichler, Stefan, 2014. "The impact of the 1918 Spanish flu epidemic on economic performance in Sweden," Journal of Health Economics, Elsevier, vol. 36(C), pages 1-19.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:42:y:2021:i:1:p:171-196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.