IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v28y2007i4p73-100.html
   My bibliography  Save this article

A Quantitative Analysis of the Relationship Between Congestion and Reliability in Electric Power Networks

Author

Listed:
  • Seth Blumsack
  • Lester B. Lave
  • Marija Ilic

Abstract

Restructuring efforts in the U.S. electric power sector have tried to encourage transmission investment by independent (non-utility) transmission companies, and have promoted various levels of market-based transmission investment. Underlying this shift to “merchant†transmission investment is an assumption that new transmission infrastructure can be classified as providing a congestion-relief benefit or a reliability benefit. In this paper, we demonstrate that this assumption is largely incorrect for meshed interconnections such as electric power networks. We focus on a particular network topology known as the Wheatstone network to show how congestion and reliability can represent tradeoffs. Lines that cause congestion may be justified on reliability grounds. We decompose the congestion and reliability effects of a given network alteration, and demonstrate their dependence through simulations on a 118-bus test network. The true relationship between congestion and reliability depends critically on identifying the relevant range of demand for evaluating any network externalities.

Suggested Citation

  • Seth Blumsack & Lester B. Lave & Marija Ilic, 2007. "A Quantitative Analysis of the Relationship Between Congestion and Reliability in Electric Power Networks," The Energy Journal, , vol. 28(4), pages 73-100, October.
  • Handle: RePEc:sae:enejou:v:28:y:2007:i:4:p:73-100
    DOI: 10.5547/ISSN0195-6574-EJ-Vol28-No4-4
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/ISSN0195-6574-EJ-Vol28-No4-4
    Download Restriction: no

    File URL: https://libkey.io/10.5547/ISSN0195-6574-EJ-Vol28-No4-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bushnell, James B & Stoft, Steven E, 1996. "Electric Grid Investment under a Contract Network Regime," Journal of Regulatory Economics, Springer, vol. 10(1), pages 61-79, July.
    2. Shmuel S. Oren, 1997. "Economic Inefficiency of Passive Transmission Rights in Congested Electricity Systems with Competitive Generation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 63-83.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benjamin, Richard, 2013. "A two-part tariff for financing transmission expansion," Utilities Policy, Elsevier, vol. 27(C), pages 98-107.
    2. Juan Rosellón & Hannes Weigt, 2011. "A Dynamic Incentive Mechanism for Transmission Expansion in Electricity Networks: Theory, Modeling, and Application," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 119-148.
    3. Lamadrid, Alberto J. & Maneevitjit, Surin & Mount, Timothy D., 2016. "The economic value of transmission lines and the implications for planning models," Energy Economics, Elsevier, vol. 57(C), pages 1-15.
    4. Ingo Vogelsang, 2018. "Can Simple Regulatory Mechanisms Realistically be used for Electricity Transmission Investment? The Case of H-R-G-V," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    5. Blumsack, Seth & Xu, Jianhua, 2011. "Spatial variation of emissions impacts due to renewable energy siting decisions in the Western U.S. under high-renewable penetration scenarios," Energy Policy, Elsevier, vol. 39(11), pages 6962-6971.
    6. Luis M. Abadie & José M. Chamorro, 2011. "Valuing Expansions of the Electricity Transmission Network under Uncertainty: The Binodal Case," Energies, MDPI, vol. 4(10), pages 1-32, October.
    7. Chamorro, José M. & Abadie, Luis M. & de Neufville, Richard & Ilić, Marija, 2012. "Market-based valuation of transmission network expansion. A heuristic application in GB," Energy, Elsevier, vol. 44(1), pages 302-320.
    8. William Hogan & Juan Rosellón & Ingo Vogelsang, 2010. "Toward a combined merchant-regulatory mechanism for electricity transmission expansion," Journal of Regulatory Economics, Springer, vol. 38(2), pages 113-143, October.
    9. Ashraf, Muhammad Hasan & Chen, Yuwen & Yalcin, Mehmet G., 2022. "Minding Braess Paradox amid third-party logistics hub capacity expansion triggered by demand surge," International Journal of Production Economics, Elsevier, vol. 248(C).
    10. Emma S. Johnson & Santanu Subhas Dey, 2022. "A Scalable Lower Bound for the Worst-Case Relay Attack Problem on the Transmission Grid," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2296-2312, July.
    11. de Nooij, Michiel & Baarsma, Barbara & Bloemhof, Gabriël & Slootweg, Han & Dijk, Harold, 2010. "Development and application of a cost-benefit framework for energy reliability: Using probabilistic methods in network planning and regulation to enhance social welfare: The N-1 rule," Energy Economics, Elsevier, vol. 32(6), pages 1277-1282, November.
    12. Alisha Fernandez & Seth Blumsack & Patrick Reed, 2012. "Evaluating wind-following and ecosystem services for hydroelectric dams in PJM," Journal of Regulatory Economics, Springer, vol. 41(1), pages 139-154, February.
    13. Hitaj, Claudia, 2015. "Location matters: The impact of renewable power on transmission congestion and emissions," Energy Policy, Elsevier, vol. 86(C), pages 1-16.
    14. Kory Hedman & Shmuel Oren & Richard O’Neill, 2011. "Optimal transmission switching: economic efficiency and market implications," Journal of Regulatory Economics, Springer, vol. 40(2), pages 111-140, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Joskow & Jean Tirole, 2005. "Merchant Transmission Investment," Journal of Industrial Economics, Wiley Blackwell, vol. 53(2), pages 233-264, June.
    2. Bushnell, James B. & Stoft, Steven E., 1997. "Improving private incentives for electric grid investment," Resource and Energy Economics, Elsevier, vol. 19(1-2), pages 85-108, March.
    3. Richard O’Neill & Emily Fisher & Benjamin Hobbs & Ross Baldick, 2008. "Towards a complete real-time electricity market design," Journal of Regulatory Economics, Springer, vol. 34(3), pages 220-250, December.
    4. Enzo Sauma & Shmuel Oren, 2006. "Proactive planning and valuation of transmission investments in restructured electricity markets," Journal of Regulatory Economics, Springer, vol. 30(3), pages 261-290, November.
    5. Enzo Sauma & Shmuel Oren, 2006. "Proactive planning and valuation of transmission investments in restructured electricity markets," Journal of Regulatory Economics, Springer, vol. 30(3), pages 358-387, November.
    6. Sauma, Enzo E. & Oren, Shmuel S., 2009. "Do generation firms in restructured electricity markets have incentives to support social-welfare-improving transmission investments?," Energy Economics, Elsevier, vol. 31(5), pages 676-689, September.
    7. Gert Brunekreeft & David Newbery, 2006. "Should merchant transmission investment be subject to a must-offer provision?," Journal of Regulatory Economics, Springer, vol. 30(3), pages 233-260, November.
    8. Thomas-Olivier Léautier & Véronique Thelen, 2009. "Optimal expansion of the power transmission grid: why not?," Journal of Regulatory Economics, Springer, vol. 36(2), pages 127-153, October.
    9. Somani, Abhishek, 2012. "Financial risk management and market performance in restructured electric power markets: Theoretical and agent-based test bed studies," ISU General Staff Papers 201201010800003479, Iowa State University, Department of Economics.
    10. Andreas Ehrenmann & Karsten Neuhoff, 2009. "A Comparison of Electricity Market Designs in Networks," Operations Research, INFORMS, vol. 57(2), pages 274-286, April.
    11. Cristian Zambrano & Yris Olaya, 2017. "An agent-based simulation approach to congestion management for the Colombian electricity market," Annals of Operations Research, Springer, vol. 258(2), pages 217-236, November.
    12. Bert Willems, 2002. "Modeling Cournot Competition in an Electricity Market with Transmission Constraints," The Energy Journal, , vol. 23(3), pages 95-125, July.
    13. Brunekreeft, Gert, 2004. "Market-based investment in electricity transmission networks: controllable flow," Utilities Policy, Elsevier, vol. 12(4), pages 269-281, December.
    14. Ventosa, Mariano & Baillo, Alvaro & Ramos, Andres & Rivier, Michel, 2005. "Electricity market modeling trends," Energy Policy, Elsevier, vol. 33(7), pages 897-913, May.
    15. Haas, R. & Auer, H., 2006. "The prerequisites for effective competition in restructured wholesale electricity markets," Energy, Elsevier, vol. 31(6), pages 857-864.
    16. Stephen C. Littlechild & Carlos J. Skerk, 2004. "Regulation of transmission expansion in Argentina Part I: State ownership, reform and the Fourth Line," Working Papers EP61, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    17. Joskow, Paul L & Tirole, Jean, 1999. "Transmission Rights and Market Power on Electric Power Networks I: Financial Rights," CEPR Discussion Papers 2093, C.E.P.R. Discussion Papers.
    18. Makoto TANAKA, 2005. "Optimal Transmission Capacity under Nodal Pricing and Incentive Regulation for Transco," Discussion papers 05021, Research Institute of Economy, Trade and Industry (RIETI).
    19. Adrien de Hauteclocque & Frédéric Marty & Julien Pillot, 2011. "The Essential Facilities Doctrine in European Competition Policy: The Case of the Energy Sector," Chapters, in: Jean-Michel Glachant & Dominique Finon & Adrien de Hauteclocque (ed.), Competition, Contracts and Electricity Markets, chapter 11, Edward Elgar Publishing.
    20. Severin Borenstein & James. Bushnell & Steven Stoft, 2000. "The Competitive Effects of Transmission Capacity in A Deregulated Electricity Industry," RAND Journal of Economics, The RAND Corporation, vol. 31(2), pages 294-325, Summer.

    More about this item

    Keywords

    Electricity networks; congestions; reliability; electricity transmission; US;
    All these keywords.

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:28:y:2007:i:4:p:73-100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.