IDEAS home Printed from https://ideas.repec.org/a/ris/apltrx/0461.html
   My bibliography  Save this article

Estimating the effect of higher education on abortion

Author

Listed:
  • Dolgikh, Sofiia

    (National Research University Higher School of Economics (NRU HSE), Moscow, Russian Federation)

  • Potanin, Bogdan

    (National Research University Higher School of Economics (NRU HSE), Moscow, Russian Federation)

Abstract

We estimate the effect of higher education on abortion probability in Russia via hierarchical (recursive) probit model with nonrandom selection. To check the robustness of the results modifications of this model accounting for heteroscedasticity and non-normality of random errors are also applied. We have found statistical evidence that higher education decrease abortion probability. Furthermore, the results of the analysis suggest that there is nonrandom selection into pregnant women and without accounting for it the effect of higher education may be underestimated.

Suggested Citation

  • Dolgikh, Sofiia & Potanin, Bogdan, 2022. "Estimating the effect of higher education on abortion," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 68, pages 117-139.
  • Handle: RePEc:ris:apltrx:0461
    as

    Download full text from publisher

    File URL: http://pe.cemi.rssi.ru/pe_2022_68_117-139.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Katherine Keenan & Emily Grundy & Michael G Kenward & David A Leon, 2014. "Women's Risk of Repeat Abortions Is Strongly Associated with Alcohol Consumption: A Longitudinal Analysis of a Russian National Panel Study, 1994–2009," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-8, March.
    2. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    3. Lonnie Stevans & Charles Register & David Sessions, 1992. "The abortion decision: A qualitative choice approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 27(4), pages 327-344, December.
    4. Gorelkina, Olga, 2007. "A Microanalysis of Fertility in Russia: The Role of Non-Economic Considerations," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 5, pages 58-74.
    5. B. S. Potanin, 2019. "Estimating the Effect of Higher Education on an Employee’s Wage," Studies on Russian Economic Development, Springer, vol. 30(3), pages 319-326, May.
    6. Randall H King & Steven C Myers & Dennis M Byrne, 1992. "The Demand for Abortion by Unmarried Teenagers," American Journal of Economics and Sociology, Wiley Blackwell, vol. 51(2), pages 223-235, April.
    7. Heini Väisänen, 2015. "The association between education and induced abortion for three cohorts of adults in Finland," Population Studies, Taylor & Francis Journals, vol. 69(3), pages 373-388, November.
    8. Eve Powell-Griner & Katherine Trent, 1987. "Sociodemographic determinants of abortion in The United States," Demography, Springer;Population Association of America (PAA), vol. 24(4), pages 553-561, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hal Snarr & Jeffrey Edwards, 2009. "Does income support increase abortions?," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 33(4), pages 575-599, November.
    2. Robert W. Brown & R. Todd Jewell & Jeffrey J. Rous, 2001. "Provider Availability, Race, and Abortion Demand," Southern Economic Journal, John Wiley & Sons, vol. 67(3), pages 656-671, January.
    3. P.A.V.B. Swamy & I-Lok Chang & Jatinder S. Mehta & William H. Greene & Stephen G. Hall & George S. Tavlas, 2016. "Removing Specification Errors from the Usual Formulation of Binary Choice Models," Econometrics, MDPI, vol. 4(2), pages 1-21, June.
    4. Carlo Altavilla & Raffaella Giacomini & Giuseppe Ragusa, 2017. "Anchoring the yield curve using survey expectations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1055-1068, September.
    5. Fernando Rios-Avila & Gustavo Canavire-Bacarreza, 2018. "Standard-error correction in two-stage optimization models: A quasi–maximum likelihood estimation approach," Stata Journal, StataCorp LP, vol. 18(1), pages 206-222, March.
    6. Sandy Fréret & Denis Maguain, 2017. "The effects of agglomeration on tax competition: evidence from a two-regime spatial panel model on French data," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 24(6), pages 1100-1140, December.
    7. Ai, Chunrong & Chen, Xiaohong, 2007. "Estimation of possibly misspecified semiparametric conditional moment restriction models with different conditioning variables," Journal of Econometrics, Elsevier, vol. 141(1), pages 5-43, November.
    8. Gregory, Allan W. & McCurdy, Thomas H., 1986. "The unbiasedness hypothesis in the forward foreign exchange market: A specification analysis with application to France, Italy, Japan, the United Kingdom and West Germany," European Economic Review, Elsevier, vol. 30(2), pages 365-381, April.
    9. B. Praag & T. Dijkstra & J. Velzen, 1985. "Least-squares theory based on general distributional assumptions with an application to the incomplete observations problem," Psychometrika, Springer;The Psychometric Society, vol. 50(1), pages 25-36, March.
    10. Reischmann, Markus, 2016. "Creative accounting and electoral motives: Evidence from OECD countries," Journal of Comparative Economics, Elsevier, vol. 44(2), pages 243-257.
    11. Czudaj Robert L., 2020. "The role of uncertainty on agricultural futures markets momentum trading and volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(3), pages 1-39, June.
    12. Vassilios Babalos & Mehmet Balcilar & Rangan Gupta, 2014. "Revisiting Herding Behavior in REITs: A Regime-Switching Approach," Working Papers 201448, University of Pretoria, Department of Economics.
    13. Topi Miettinen & Sigrid Suetens, 2008. "Communication and Guilt in a Prisoner's Dilemma," Journal of Conflict Resolution, Peace Science Society (International), vol. 52(6), pages 945-960, December.
    14. Towfiqul Islam Khan & Mashfique Ibne Akbar, 2015. "Illicit Financial Flow in view of Financing the Post-2015 Development Agenda," Southern Voice Occasional Paper 25, Southern Voice.
    15. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    16. Potrafke, Niklas, 2019. "Electoral cycles in perceived corruption: International empirical evidence," Journal of Comparative Economics, Elsevier, vol. 47(1), pages 215-224.
    17. Corradi, Valentina & Swanson, Norman R., 2004. "A test for the distributional comparison of simulated and historical data," Economics Letters, Elsevier, vol. 85(2), pages 185-193, November.
    18. Hendrik Thiel & Stephan L. Thomsen, 2015. "Individual Poverty Paths and the Stability of Control-Perception," SOEPpapers on Multidisciplinary Panel Data Research 794, DIW Berlin, The German Socio-Economic Panel (SOEP).
    19. Arzheimer, Kai & Evans, Jocelyn, 2010. "Bread and butter à la française: Multiparty forecasts of the French legislative vote (1981-2007)," International Journal of Forecasting, Elsevier, vol. 26(1), pages 19-31, January.
    20. repec:ebl:ecbull:v:3:y:2008:i:5:p:1-7 is not listed on IDEAS
    21. Tobias Hartl & Roland Jucknewitz, 2022. "Approximate state space modelling of unobserved fractional components," Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 75-98, January.

    More about this item

    Keywords

    abortion; higher education; nonrandom selection; endogeneity;
    All these keywords.

    JEL classification:

    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • I12 - Health, Education, and Welfare - - Health - - - Health Behavior
    • I23 - Health, Education, and Welfare - - Education - - - Higher Education; Research Institutions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:apltrx:0461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anatoly Peresetsky (email available below). General contact details of provider: http://appliedeconometrics.cemi.rssi.ru/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.