IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Comparison of VaR estimation methods for different forecasting samples for Russian stocks

  • Shcherba, Alexandr

    ()

    (Gazprombank, Moscow, Russia)

The paper aims at finding the most accurate VaR model for the four most liquid Russian stocks. Among the possible VaR modeling techniques, the estimates considered in this work are based on GARCH models with six different distributions. A back testing analysis is performed to evaluate the accuracy of the alternative models and to find the worst predictable period in terms of the volatility behavior.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://pe.cemi.rssi.ru/pe_2011_4_58-70.pdf
File Function: Full text
Download Restriction: no

Article provided by Publishing House "SINERGIA PRESS" in its journal Applied Econometrics.

Volume (Year): 24 (2011)
Issue (Month): 4 ()
Pages: 58-70

as
in new window

Handle: RePEc:ris:apltrx:0102
Contact details of provider: Web page: http://appliedeconometrics.cemi.rssi.ru/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
  2. Fajardo, J. & Farias, A. R & Ornelas, J. R. H, 2003. "Goodness-of-fit Tests focus on VaR Estimation," Finance Lab Working Papers flwp_55, Finance Lab, Insper Instituto de Ensino e Pesquisa.
  3. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
  4. Robert F. Engle & Victor K. Ng, 1991. "Measuring and Testing the Impact of News on Volatility," NBER Working Papers 3681, National Bureau of Economic Research, Inc.
  5. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  6. Bauer, Christian, 2000. "Value at risk using hyperbolic distributions," Journal of Economics and Business, Elsevier, vol. 52(5), pages 455-467.
  7. Sentana,E., 1995. "Quadratic Arch Models," Papers 9517, Centro de Estudios Monetarios Y Financieros-.
  8. Peter Christoffersen & Jinyong Hahn & Atsushi Inoue, 1999. "Testing, Comparing, and Combining Value at Risk Measures," Center for Financial Institutions Working Papers 99-44, Wharton School Center for Financial Institutions, University of Pennsylvania.
  9. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  10. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
  11. Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
  12. Booth, G. Geoffrey & Martikainen, Teppo & Tse, Yiuman, 1997. "Price and volatility spillovers in Scandinavian stock markets," Journal of Banking & Finance, Elsevier, vol. 21(6), pages 811-823, June.
  13. Keith Kuester & Stefan Mittnik & Marc S. Paolella, 2006. "Value-at-Risk Prediction: A Comparison of Alternative Strategies," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(1), pages 53-89.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ris:apltrx:0102. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Anatoly Peresetsky)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.