IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Measuring risk of crude oil at extreme quantiles

  • Sasa Zikovic


    (University of Rijeka, Faculty of Economics, Rijeka, Croatia)

The purpose of this paper is to investigate the performance of VaR models at measuring risk for WTI oil one-month futures returns. Risk models, ranging from industry standards such as RiskMetrics and historical simulation to conditional extreme value model, are used to calculate commodity market risk at extreme quantiles: 0.95, 0.99, 0.995 and 0.999 for both long and short trading positions. Our results show that out of the tested fat tailed distributions, generalised Pareto distribution provides the best fit to both tails of oil returns although tails differ significantly, with the right tail having a higher tail index, indicative of more extreme events. The main conclusion is that, in the analysed period, only extreme value theory based models provide a reasonable degree of safety while widespread VaR models do not provide adequate risk coverage and their performance is especially weak for short position in oil.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Article provided by University of Rijeka, Faculty of Economics in its journal Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics.

Volume (Year): 29 (2011)
Issue (Month): 1 ()
Pages: 9-31

in new window

Handle: RePEc:rfe:zbefri:v:29:y:2011:i:1:p:9-31
Contact details of provider: Postal: p.p. 113, 51000 RIJEKA, Ivana Filipovica 4
Phone: 0038551355111
Fax: 0038551212268
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Narayan, Paresh Kumar & Smyth, Russell, 2007. "A panel cointegration analysis of the demand for oil in the Middle East," Energy Policy, Elsevier, vol. 35(12), pages 6258-6265, December.
  2. Cologni, Alessandro & Manera, Matteo, 2008. "Oil prices, inflation and interest rates in a structural cointegrated VAR model for the G-7 countries," Energy Economics, Elsevier, vol. 30(3), pages 856-888, May.
  3. Cheong, Chin Wen, 2009. "Modeling and forecasting crude oil markets using ARCH-type models," Energy Policy, Elsevier, vol. 37(6), pages 2346-2355, June.
  4. Coronel-Brizio, H.F. & Hernández-Montoya, A.R., 2005. "On fitting the Pareto–Levy distribution to stock market index data: Selecting a suitable cutoff value," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 437-449.
  5. Matteo Manera & Alessandro Cologni, 2006. "The Asymmetric Effects of Oil Shocks on Output Growth: A Markov-Switching Analysis for the G-7 Countries," Working Papers 2006.29, Fondazione Eni Enrico Mattei.
  6. Peter Ferderer, J., 1996. "Oil price volatility and the macroeconomy," Journal of Macroeconomics, Elsevier, vol. 18(1), pages 1-26.
  7. Chen, Shiu-Sheng, 2009. "Oil price pass-through into inflation," Energy Economics, Elsevier, vol. 31(1), pages 126-133, January.
  8. Marc Gronwald, 2008. "Large Oil Shocks and the US Economy: Infrequent Incidents with Large Effects," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 151-172.
  9. Burnecki, Krzysztof & Misiorek, Adam & Weron, Rafal, 2010. "Loss Distributions," MPRA Paper 22163, University Library of Munich, Germany.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:rfe:zbefri:v:29:y:2011:i:1:p:9-31. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Antica Sergovic)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.