IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0275473.html
   My bibliography  Save this article

Person-to-person opinion dynamics: An empirical study using an online game

Author

Listed:
  • Johnathan A Adams
  • Gentry White
  • Robyn P Araujo

Abstract

A model needs to make verifiable predictions to have any scientific value. In opinion dynamics, the study of how individuals exchange opinions with one another, there are many theoretical models which attempt to model opinion exchange, one of which is the Martins model, which differs from other models by using a parameter that is easier to control for in an experiment. In this paper, we have designed an experiment to verify the Martins model and contribute to the experimental design in opinion dynamic with our novel method.

Suggested Citation

  • Johnathan A Adams & Gentry White & Robyn P Araujo, 2022. "Person-to-person opinion dynamics: An empirical study using an online game," PLOS ONE, Public Library of Science, vol. 17(10), pages 1-21, October.
  • Handle: RePEc:plo:pone00:0275473
    DOI: 10.1371/journal.pone.0275473
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0275473
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0275473&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0275473?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Corazzini, Luca & Pavesi, Filippo & Petrovich, Beatrice & Stanca, Luca, 2012. "Influential listeners: An experiment on persuasion bias in social networks," European Economic Review, Elsevier, vol. 56(6), pages 1276-1288.
    2. Johnathan Adams & Gentry White & Robyn Araujo, 2021. "The Role of Mistrust in the Modelling of Opinion Adoption," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 24(4), pages 1-4.
    3. Pawel Sobkowicz, 2009. "Modelling Opinion Formation with Physics Tools: Call for Closer Link with Reality," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(1), pages 1-11.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buechel, Berno & Hellmann, Tim & Klößner, Stefan, 2015. "Opinion dynamics and wisdom under conformity," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 240-257.
    2. Benjamin Enke & Florian Zimmermann, 2019. "Correlation Neglect in Belief Formation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(1), pages 313-332.
    3. Buechel, Berno & Klößner, Stefan & Meng, Fanyuan & Nassar, Anis, 2023. "Misinformation due to asymmetric information sharing," Journal of Economic Dynamics and Control, Elsevier, vol. 150(C).
    4. Massimiliano Zanin & David Papo & Miguel Romance & Regino Criado & Santiago Moral, 2016. "The topology of card transaction money flows," Papers 1605.04938, arXiv.org.
    5. Golub Benjamin & Jackson Matthew O., 2012. "Does Homophily Predict Consensus Times? Testing a Model of Network Structure via a Dynamic Process," Review of Network Economics, De Gruyter, vol. 11(3), pages 1-31, September.
    6. Markus Mobius & Tuan Phan & Adam Szeidl, 2015. "Treasure Hunt: Social Learning in the Field," CEU Working Papers 2015_2, Department of Economics, Central European University.
    7. Els Weinans & George van Voorn & Patrick Steinmann & Elisa Perrone & Ahmadreza Marandi, 2024. "An Exploration of Drivers of Opinion Dynamics," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 27(1), pages 1-5.
    8. Isabel Melguizo, 2019. "Homophily and the Persistence of Disagreement," The Economic Journal, Royal Economic Society, vol. 129(619), pages 1400-1424.
    9. Shyam Gouri Suresh & Scott Jeffrey, 2017. "The Consequences of Social Pressures on Partisan Opinion Dynamics," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 43(2), pages 242-259, March.
    10. Michel Grabisch & Agnieszka Rusinowska, 2020. "A Survey on Nonstrategic Models of Opinion Dynamics," Games, MDPI, vol. 11(4), pages 1-29, December.
    11. Battiston, Pietro & Stanca, Luca, 2015. "Boundedly rational opinion dynamics in social networks: Does indegree matter?," Journal of Economic Behavior & Organization, Elsevier, vol. 119(C), pages 400-421.
    12. Berno Buechel & Stefan Klößner & Martin Lochmüller & Heiko Rauhut, 2020. "The strength of weak leaders: an experiment on social influence and social learning in teams," Experimental Economics, Springer;Economic Science Association, vol. 23(2), pages 259-293, June.
    13. Gallo, E. & Langtry, A., 2020. "Social Networks, Confirmation Bias and Shock Elections," Cambridge Working Papers in Economics 2099, Faculty of Economics, University of Cambridge.
    14. Eger, Steffen, 2016. "Opinion dynamics and wisdom under out-group discrimination," Mathematical Social Sciences, Elsevier, vol. 80(C), pages 97-107.
    15. Shane T. Mueller & Yin-Yin Sarah Tan, 2018. "Cognitive perspectives on opinion dynamics: the role of knowledge in consensus formation, opinion divergence, and group polarization," Journal of Computational Social Science, Springer, vol. 1(1), pages 15-48, January.
    16. Weimer, Christopher W. & Miller, J.O. & Hill, Raymond R. & Hodson, Douglas D., 2022. "An opinion dynamics model of meta-contrast with continuous social influence forces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    17. Brandts, Jordi & Giritligil, Ayça Ebru & Weber, Roberto A., 2015. "An experimental study of persuasion bias and social influence in networks," European Economic Review, Elsevier, vol. 80(C), pages 214-229.
    18. Castro, Luis E. & Shaikh, Nazrul I., 2018. "A particle-learning-based approach to estimate the influence matrix of online social networks," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 1-18.
    19. Rapanos, Theodoros, 2023. "What makes an opinion leader: Expertise vs popularity," Games and Economic Behavior, Elsevier, vol. 138(C), pages 355-372.
    20. Mantilla, César, 2015. "Communication networks in common-pool resource games: Field experimental evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 118(C), pages 215-226.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0275473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.