IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0272633.html
   My bibliography  Save this article

Eco-efficiency evaluation of Chinese provincial industrial system: A dynamic hybrid two-stage DEA approach

Author

Listed:
  • Kai He
  • Nan Zhu

Abstract

In China, industrial pollution has become an urgent problem for policy makers and enterprise managers. To better support industrial development, we need to determine the effectiveness of policies through efficiency evaluation. China’s provincial industrial system consists of two stages: production and emission reduction. The emission reduction stage is composed of three parallel sub stages: solid waste treatment, waste gas treatment and wastewater treatment. In this process, the treatment capacity of industrial wastewater treatment facilities can be used as carry forward variable, which is not only the desirable output of the previous emission reduction stage, but also the input of the current emission reduction stage. Therefore, this paper proposes a dynamic hybrid two-stage data envelopment analysis (DEA) model for eco-efficiency evaluation of industrial systems, and applies it to a case study of Chinese regional industry. Applying the data collected from 2011 to 2015 to the model, the following conclusions can be drawn: (1) During the whole survey period, the average eco-efficiency was 0.9027. The overall eco-inefficiency of China’s provincial industrial system during the study period is mainly due to low efficiency of solid waste treatment and waste gas treatment. (2) The average eco-efficiency of provincial industrial system increased steadily from 2011 (0.6448) to 2014 (0.6777), but decreased slightly in 2015 (0.5908). (3) The carry forward treatment capacity of industrial wastewater treatment facilities has a remarkable impact on provincial industrial system efficiency scores, especially at the wastewater treatment stage (0.6002 vs 0.3691). (4) Provincial industrial system exists distinct geographical characteristics of low efficiency. This study has important guiding significance for policy makers and enterprise managers who are concerned about industrial pollution control.

Suggested Citation

  • Kai He & Nan Zhu, 2022. "Eco-efficiency evaluation of Chinese provincial industrial system: A dynamic hybrid two-stage DEA approach," PLOS ONE, Public Library of Science, vol. 17(8), pages 1-26, August.
  • Handle: RePEc:plo:pone00:0272633
    DOI: 10.1371/journal.pone.0272633
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0272633
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0272633&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0272633?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yingnan Liu & Ke Wang, 2015. "Energy efficiency of China's industry sector: An adjusted network DEA-based decomposition analysis," CEEP-BIT Working Papers 83, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    2. Zhou, D.Q. & Wang, Qunwei & Su, B. & Zhou, P. & Yao, L.X., 2016. "Industrial energy conservation and emission reduction performance in China: A city-level nonparametric analysis," Applied Energy, Elsevier, vol. 166(C), pages 201-209.
    3. Emrouznejad, Ali & Yang, Guo-liang, 2018. "A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016," Socio-Economic Planning Sciences, Elsevier, vol. 61(C), pages 4-8.
    4. Chiang Kao, 2014. "Efficiency Decomposition in Network Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Wade D. Cook & Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 0, pages 55-77, Springer.
    5. Liu, Yingnan & Wang, Ke, 2015. "Energy efficiency of China's industry sector: An adjusted network DEA (data envelopment analysis)-based decomposition analysis," Energy, Elsevier, vol. 93(P2), pages 1328-1337.
    6. Zhang, Lin & Zhao, Linlin & Zha, Yong, 2021. "Efficiency evaluation of Chinese regional industrial systems using a dynamic two-stage DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).
    7. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    8. Huppes, Gjalt & Ishikawa, Masanobu, 2009. "Eco-efficiency guiding micro-level actions towards sustainability: Ten basic steps for analysis," Ecological Economics, Elsevier, vol. 68(6), pages 1687-1700, April.
    9. Dyckhoff, H. & Allen, K., 2001. "Measuring ecological efficiency with data envelopment analysis (DEA)," European Journal of Operational Research, Elsevier, vol. 132(2), pages 312-325, July.
    10. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    11. A. Charnes & W. W. Cooper, 1962. "Programming with linear fractional functionals," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 9(3‐4), pages 181-186, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koronakos, Gregory & Sotiros, Dimitris & Despotis, Dimitris K. & Kritikos, Manolis N., 2022. "Fair efficiency decomposition in network DEA: A compromise programming approach," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    2. Fatemeh Sadat Seyed Esmaeili & Emran Mohammadi, 2024. "Z-number network data envelopment analysis approach: A case study on the Iranian insurance industry," PLOS ONE, Public Library of Science, vol. 19(7), pages 1-26, July.
    3. Peykani, Pejman & Seyed Esmaeili, Fatemeh Sadat & Pishvaee, Mir Saman & Rostamy-Malkhalifeh, Mohsen & Hosseinzadeh Lotfi, Farhad, 2024. "Matrix-based network data envelopment analysis: A common set of weights approach," Socio-Economic Planning Sciences, Elsevier, vol. 95(C).
    4. Georgiou, Andreas C. & Thanassoulis, Emmanuel & Papadopoulou, Alexandra, 2022. "Using data envelopment analysis in markovian decision making," European Journal of Operational Research, Elsevier, vol. 298(1), pages 276-292.
    5. Kai He & Nan Zhu & Wu Jiang & Chuanjin Zhu, 2022. "Efficiency Evaluation of Chinese Provincial Industrial System Based on Network DEA Method," Sustainability, MDPI, vol. 14(9), pages 1-24, April.
    6. Chen, Lei & Wang, Ying-Ming, 2025. "Efficiency decomposition and frontier projection of two-stage network DEA under variable returns to scale," European Journal of Operational Research, Elsevier, vol. 322(1), pages 157-170.
    7. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    8. Sinuany-Stern, Zilla, 2023. "Foundations of operations research: From linear programming to data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1069-1080.
    9. Zhang, Lin & Zhao, Linlin & Zha, Yong, 2021. "Efficiency evaluation of Chinese regional industrial systems using a dynamic two-stage DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).
    10. Khezrimotlagh, Dariush & Kaffash, Sepideh & Zhu, Joe, 2022. "U.S. airline mergers’ performance and productivity change," Journal of Air Transport Management, Elsevier, vol. 102(C).
    11. Chen, Ya & Pan, Yongbin & Liu, Haoxiang & Wu, Huaqing & Deng, Guangwei, 2023. "Efficiency analysis of Chinese universities with shared inputs: An aggregated two-stage network DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).
    12. Ming-Fu Hsu & Ying-Shao Hsin & Fu-Jiing Shiue, 2022. "Business analytics for corporate risk management and performance improvement," Annals of Operations Research, Springer, vol. 315(2), pages 629-669, August.
    13. Kremantzis, Marios Dominikos & Beullens, Patrick & Kyrgiakos, Leonidas Sotirios & Klein, Jonathan, 2022. "Measurement and evaluation of multi-function parallel network hierarchical DEA systems," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    14. Ibrahim Alnafrah, 2021. "Efficiency evaluation of BRICS’s national innovation systems based on bias-corrected network data envelopment analysis," Journal of Innovation and Entrepreneurship, Springer, vol. 10(1), pages 1-28, December.
    15. Kao, Chiang, 2022. "A maximum slacks-based measure of efficiency for closed series production systems," Omega, Elsevier, vol. 106(C).
    16. Svetlana V. Ratner & Artem M. Shaposhnikov & Andrey V. Lychev, 2023. "Network DEA and Its Applications (2017–2022): A Systematic Literature Review," Mathematics, MDPI, vol. 11(9), pages 1-24, May.
    17. Abbas Mardani & Dalia Streimikiene & Tomas Balezentis & Muhamad Zameri Mat Saman & Khalil Md Nor & Seyed Meysam Khoshnava, 2018. "Data Envelopment Analysis in Energy and Environmental Economics: An Overview of the State-of-the-Art and Recent Development Trends," Energies, MDPI, vol. 11(8), pages 1-21, August.
    18. Eucabeth Majiwa & Boon L. Lee & Clevo Wilson & Hidemichi Fujii & Shunsuke Managi, 2018. "A network data envelopment analysis (NDEA) model of post-harvest handling: the case of Kenya’s rice processing industry," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(3), pages 631-648, June.
    19. Saransh Tiwari & Sanjeet Singh & Sanjay Kumar Singh, 2023. "Comprehensive evaluation of passenger road transportation through dynamic network data envelopment analysis: A case study of state road transport undertakings in India," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(8), pages 4311-4332, December.
    20. Fenfen Li & Bo Dai & Qifan Wu, 2021. "Dynamic Green Growth Assessment of China’s Industrial System with an Improved SBM Model and Global Malmquist Index," Mathematics, MDPI, vol. 9(20), pages 1-26, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0272633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.