IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v84y2022ics0038012122002294.html
   My bibliography  Save this article

Measurement and evaluation of multi-function parallel network hierarchical DEA systems

Author

Listed:
  • Kremantzis, Marios Dominikos
  • Beullens, Patrick
  • Kyrgiakos, Leonidas Sotirios
  • Klein, Jonathan

Abstract

Many organisations are composed of multiple departments connected either in series or in parallel, which may be further decomposed into a number of functions arranged in a hierarchical structure. Several researchers have successfully used appropriate Data Envelopment Analysis (DEA) modelling techniques to assess complex structures. However, to our knowledge, no-one has yet examined the case of measuring and evaluating a parallel network structure combined with a hierarchical one. This paper discusses the development of a multi-function parallel system with embedded hierarchical network structures. A linear additive decomposition DEA model and a non-linear multiplicative aggregation DEA model are proposed as alternatives to evaluate the operating performance of such a structure. The system, the sub-systems, and the efficiencies of their internal units, as well as their relationships, are identified. The system efficiency of the additive model is shown to be greater than or equal to that of the multiplicative model. To verify the applicability of our proposed models, we consider a hypothetical example of the measurement and evaluation of the performances of several Business Schools across a number of universities. Other envisaged areas of application of our structure could include supporting the evaluation of the supply chain management of a firm, or the determination of the most desirable ship design considering maintenance issues.

Suggested Citation

  • Kremantzis, Marios Dominikos & Beullens, Patrick & Kyrgiakos, Leonidas Sotirios & Klein, Jonathan, 2022. "Measurement and evaluation of multi-function parallel network hierarchical DEA systems," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
  • Handle: RePEc:eee:soceps:v:84:y:2022:i:c:s0038012122002294
    DOI: 10.1016/j.seps.2022.101428
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012122002294
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2022.101428?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kao, Chiang, 2009. "Efficiency decomposition in network data envelopment analysis: A relational model," European Journal of Operational Research, Elsevier, vol. 192(3), pages 949-962, February.
    2. Giraleas, Dimitris & Emrouznejad, Ali & Thanassoulis, Emmanuel, 2012. "Productivity change using growth accounting and frontier-based approaches – Evidence from a Monte Carlo analysis," European Journal of Operational Research, Elsevier, vol. 222(3), pages 673-683.
    3. Chen, Chialin & Zhu, Joe & Yu, Jiun-Yu & Noori, Hamid, 2012. "A new methodology for evaluating sustainable product design performance with two-stage network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 221(2), pages 348-359.
    4. Plácido Moreno & Sebastián Lozano, 2014. "A network DEA assessment of team efficiency in the NBA," Annals of Operations Research, Springer, vol. 214(1), pages 99-124, March.
    5. Emrouznejad, Ali & Yang, Guo-liang, 2018. "A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016," Socio-Economic Planning Sciences, Elsevier, vol. 61(C), pages 4-8.
    6. Leonidas Sotirios Kyrgiakos & George Vlontzos & Panos M. Pardalos, 2021. "Ranking EU Agricultural Sectors under the Prism of Alternative Widths on Window DEA," Energies, MDPI, vol. 14(4), pages 1-26, February.
    7. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min & Lin, Bruce J.Y., 2013. "A survey of DEA applications," Omega, Elsevier, vol. 41(5), pages 893-902.
    8. Lu, Wen-Min & Liu, John S. & Kweh, Qian Long & Wang, Chung-Wei, 2016. "Exploring the benchmarks of the Taiwanese investment trust corporations: Management and investment efficiency perspectives," European Journal of Operational Research, Elsevier, vol. 248(2), pages 607-618.
    9. Kao, Chiang & Hung, Hsi-Tai, 2008. "Efficiency analysis of university departments: An empirical study," Omega, Elsevier, vol. 36(4), pages 653-664, August.
    10. Kao, Chiang, 2016. "Efficiency decomposition and aggregation in network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 255(3), pages 778-786.
    11. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    12. Kao, Chiang & Hwang, Shiuh-Nan, 2008. "Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan," European Journal of Operational Research, Elsevier, vol. 185(1), pages 418-429, February.
    13. Wang, Chun-Hsien & Lu, Yung-Hsiang & Huang, Chin-Wei & Lee, Jun-Yen, 2013. "R&D, productivity, and market value: An empirical study from high-technology firms," Omega, Elsevier, vol. 41(1), pages 143-155.
    14. Thomas Bournaris & George Vlontzos & Christina Moulogianni, 2019. "Efficiency of Vegetables Produced in Glasshouses: The Impact of Data Envelopment Analysis (DEA) in Land Management Decision Making," Land, MDPI, vol. 8(1), pages 1-11, January.
    15. De Witte, Kristof & Rogge, Nicky & Cherchye, Laurens & Van Puyenbroeck, Tom, 2013. "Economies of scope in research and teaching: A non-parametric investigation," Omega, Elsevier, vol. 41(2), pages 305-314.
    16. Paradi, Joseph C. & Zhu, Haiyan, 2013. "A survey on bank branch efficiency and performance research with data envelopment analysis," Omega, Elsevier, vol. 41(1), pages 61-79.
    17. C. Vaz & A. Camanho & R. Guimarães, 2010. "The assessment of retailing efficiency using Network Data Envelopment Analysis," Annals of Operations Research, Springer, vol. 173(1), pages 5-24, January.
    18. Chiang Kao, 2017. "Network Data Envelopment Analysis," International Series in Operations Research and Management Science, Springer, number 978-3-319-31718-2, December.
    19. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    20. Kao, Chiang & Liu, Shiang-Tai, 2019. "Cross efficiency measurement and decomposition in two basic network systems," Omega, Elsevier, vol. 83(C), pages 70-79.
    21. Chen, Kun & Zhu, Joe, 2017. "Second order cone programming approach to two-stage network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 262(1), pages 231-238.
    22. H Amatatsu & T Ueda & Y Amatatsu, 2012. "Efficiency and returns-to-scale of local governments," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(3), pages 299-305, March.
    23. Zhang, Linyan & Chen, Kun, 2019. "Hierarchical network systems: An application to high-technology industry in China," Omega, Elsevier, vol. 82(C), pages 118-131.
    24. Omrani, Hashem & Emrouznejad, Ali & Shamsi, Meisam & Fahimi, Pegah, 2022. "Evaluation of insurance companies considering uncertainty: A multi-objective network data envelopment analysis model with negative data and undesirable outputs," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    25. Cook, Wade D. & Zhu, Joe, 2007. "Classifying inputs and outputs in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 180(2), pages 692-699, July.
    26. Kao, Chiang, 2009. "Efficiency measurement for parallel production systems," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1107-1112, August.
    27. Meng, Wei & Zhang, Daqun & Qi, Li & Liu, Wenbin, 2008. "Two-level DEA approaches in research evaluation," Omega, Elsevier, vol. 36(6), pages 950-957, December.
    28. Casu, B. & Thanassoulis, E., 2006. "Evaluating cost efficiency in central administrative services in UK universities," Omega, Elsevier, vol. 34(5), pages 417-426, October.
    29. Guo, Chuanyin & Wei, Fajie & Chen, Yao, 2017. "A note on second order cone programming approach to two-stage network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 263(2), pages 733-735.
    30. Guo, Chuanyin & Abbasi Shureshjani, Roohollah & Foroughi, Ali Asghar & Zhu, Joe, 2017. "Decomposition weights and overall efficiency in two-stage additive network DEA," European Journal of Operational Research, Elsevier, vol. 257(3), pages 896-906.
    31. Azadi, Majid & Shabani, Amir & Khodakarami, Mohsen & Farzipoor Saen, Reza, 2014. "Planning in feasible region by two-stage target-setting DEA methods: An application in green supply chain management of public transportation service providers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 324-338.
    32. Castelli, Lorenzo & Pesenti, Raffaele & Ukovich, Walter, 2004. "DEA-like models for the efficiency evaluation of hierarchically structured units," European Journal of Operational Research, Elsevier, vol. 154(2), pages 465-476, April.
    33. Yong Tan & Peter Wanke & Jorge Antunes & Ali Emrouznejad, 2021. "Unveiling endogeneity between competition and efficiency in Chinese banks: a two-stage network DEA and regression analysis," Annals of Operations Research, Springer, vol. 306(1), pages 131-171, November.
    34. Chiang Kao, 2014. "Efficiency Decomposition in Network Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Wade D. Cook & Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 0, pages 55-77, Springer.
    35. Khezrimotlagh, Dariush, 2022. "Simulation designs for production frontiers," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1321-1334.
    36. C Kao, 2012. "Efficiency decomposition for parallel production systems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(1), pages 64-71, January.
    37. Banker, Rajiv D. & Gadh, Vandana M. & Gorr, Wilpen L., 1993. "A Monte Carlo comparison of two production frontier estimation methods: Corrected ordinary least squares and data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 67(3), pages 332-343, June.
    38. Zhiyong Li & Chen Feng & Ying Tang, 2022. "Bank efficiency and failure prediction: a nonparametric and dynamic model based on data envelopment analysis," Annals of Operations Research, Springer, vol. 315(1), pages 279-315, August.
    39. Kao, Chiang, 2018. "Multiplicative aggregation of division efficiencies in network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 270(1), pages 328-336.
    40. A. M. Theodoridis & A. Psychoudakis, 2008. "Efficiency Measurement in Greek Dairy Farms: Stochastic Frontier vs. Data Envelopment Analysis," International Journal of Business and Economic Sciences Applied Research (IJBESAR), International Hellenic University (IHU), Kavala Campus, Greece (formerly Eastern Macedonia and Thrace Institute of Technology - EMaTTech), vol. 1(2), pages 53-67, December.
    41. Dimitris Despotis & Gregory Koronakos & Dimitris Sotiros, 2016. "Composition versus decomposition in two-stage network DEA: a reverse approach," Journal of Productivity Analysis, Springer, vol. 45(1), pages 71-87, February.
    42. Kao, Chiang, 2015. "Efficiency measurement for hierarchical network systems," Omega, Elsevier, vol. 51(C), pages 121-127.
    43. Cook, Wade D. & Zhu, Joe & Bi, Gongbing & Yang, Feng, 2010. "Network DEA: Additive efficiency decomposition," European Journal of Operational Research, Elsevier, vol. 207(2), pages 1122-1129, December.
    44. Chia-Nan Wang & Tran Quynh Le & Ching-Hua Yu & Hsiao-Chi Ling & Thanh-Tuan Dang, 2022. "Strategic Environmental Assessment of Land Transportation: An Application of DEA with Undesirable Output Approach," Sustainability, MDPI, vol. 14(2), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Linyan & Chen, Kun, 2019. "Hierarchical network systems: An application to high-technology industry in China," Omega, Elsevier, vol. 82(C), pages 118-131.
    2. Kao, Chiang, 2020. "Decomposition of slacks-based efficiency measures in network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 283(2), pages 588-600.
    3. Kao, Chiang, 2018. "Multiplicative aggregation of division efficiencies in network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 270(1), pages 328-336.
    4. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    5. Kao, Chiang, 2019. "Inefficiency identification for closed series production systems," European Journal of Operational Research, Elsevier, vol. 275(2), pages 599-607.
    6. Kao, Chiang, 2016. "Efficiency decomposition and aggregation in network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 255(3), pages 778-786.
    7. Tatiana Bencova & Andrea Bohacikova, 2022. "DEA in Performance Measurement of Two-Stage Processes: Comparative Overview of the Literature," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 111-129.
    8. Phung, Manh-Trung & Cheng, Cheng-Ping & Guo, Chuanyin & Kao, Chen-Yu, 2020. "Mixed Network DEA with Shared Resources: A Case of Measuring Performance for Banking Industry," Operations Research Perspectives, Elsevier, vol. 7(C).
    9. Kao, Chiang, 2017. "Efficiency measurement and frontier projection identification for general two-stage systems in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 261(2), pages 679-689.
    10. Nafiseh Javaherian & Ali Hamzehee & Hossein Sayyadi Tooranloo, 2021. "A compositional approach to two-stage Data Envelopment Analysis in intuitionistic fuzzy environment," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(1), pages 21-39.
    11. Joe Zhu, 2022. "DEA under big data: data enabled analytics and network data envelopment analysis," Annals of Operations Research, Springer, vol. 309(2), pages 761-783, February.
    12. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    13. Nafiseh Javaherian & Ali Hamzehee & Hossein Sayyadi Tooranloo, 2021. "A compositional approach to two-stage Data Envelopment Analysis in intuitionistic fuzzy environment," Operations Research and Decisions, Wroclaw University of Science Technology, Faculty of Management, vol. 31, pages 21-39.
    14. Kao, Chiang, 2015. "Efficiency measurement for hierarchical network systems," Omega, Elsevier, vol. 51(C), pages 121-127.
    15. Xiao, Huijuan & Wang, Daoping & Qi, Yu & Shao, Shuai & Zhou, Ya & Shan, Yuli, 2021. "The governance-production nexus of eco-efficiency in Chinese resource-based cities: A two-stage network DEA approach," Energy Economics, Elsevier, vol. 101(C).
    16. Meng, Fanyong & Xiong, Beibei, 2021. "Logical efficiency decomposition for general two-stage systems in view of cross efficiency," European Journal of Operational Research, Elsevier, vol. 294(2), pages 622-632.
    17. Kao, Chiang & Liu, Shiang-Tai, 2019. "Cross efficiency measurement and decomposition in two basic network systems," Omega, Elsevier, vol. 83(C), pages 70-79.
    18. Kaffash, Sepideh & Azizi, Roza & Huang, Ying & Zhu, Joe, 2020. "A survey of data envelopment analysis applications in the insurance industry 1993–2018," European Journal of Operational Research, Elsevier, vol. 284(3), pages 801-813.
    19. Koronakos, Gregory & Sotiros, Dimitris & Despotis, Dimitris K. & Kritikos, Manolis N., 2022. "Fair efficiency decomposition in network DEA: A compromise programming approach," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    20. Li, Yongjun & Liu, Jin & Ang, Sheng & Yang, Feng, 2021. "Performance evaluation of two-stage network structures with fixed-sum outputs: An application to the 2018winter Olympic Games," Omega, Elsevier, vol. 102(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:84:y:2022:i:c:s0038012122002294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.