IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0133139.html
   My bibliography  Save this article

Developing Cost-Effective Field Assessments of Carbon Stocks in Human-Modified Tropical Forests

Author

Listed:
  • Erika Berenguer
  • Toby A Gardner
  • Joice Ferreira
  • Luiz E O C Aragão
  • Plínio B Camargo
  • Carlos E Cerri
  • Mariana Durigan
  • Raimundo C Oliveira Junior
  • Ima C G Vieira
  • Jos Barlow

Abstract

Across the tropics, there is a growing financial investment in activities that aim to reduce emissions from deforestation and forest degradation, such as REDD+. However, most tropical countries lack on-the-ground capacity to conduct reliable and replicable assessments of forest carbon stocks, undermining their ability to secure long-term carbon finance for forest conservation programs. Clear guidance on how to reduce the monetary and time costs of field assessments of forest carbon can help tropical countries to overcome this capacity gap. Here we provide such guidance for cost-effective one-off field assessments of forest carbon stocks. We sampled a total of eight components from four different carbon pools (i.e. aboveground, dead wood, litter and soil) in 224 study plots distributed across two regions of eastern Amazon. For each component we estimated survey costs, contribution to total forest carbon stocks and sensitivity to disturbance. Sampling costs varied thirty-one-fold between the most expensive component, soil, and the least, leaf litter. Large live stems (≥10 cm DBH), which represented only 15% of the overall sampling costs, was by far the most important component to be assessed, as it stores the largest amount of carbon and is highly sensitive to disturbance. If large stems are not taxonomically identified, costs can be reduced by a further 51%, while incurring an error in aboveground carbon estimates of only 5% in primary forests, but 31% in secondary forests. For rapid assessments, necessary to help prioritize locations for carbon- conservation activities, sampling of stems ≥20cm DBH without taxonomic identification can predict with confidence (R2 = 0.85) whether an area is relatively carbon-rich or carbon-poor—an approach that is 74% cheaper than sampling and identifying all the stems ≥10cm DBH. We use these results to evaluate the reliability of forest carbon stock estimates provided by the IPCC and FAO when applied to human-modified forests, and to highlight areas where cost savings in carbon stock assessments could be most easily made.

Suggested Citation

  • Erika Berenguer & Toby A Gardner & Joice Ferreira & Luiz E O C Aragão & Plínio B Camargo & Carlos E Cerri & Mariana Durigan & Raimundo C Oliveira Junior & Ima C G Vieira & Jos Barlow, 2015. "Developing Cost-Effective Field Assessments of Carbon Stocks in Human-Modified Tropical Forests," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-19, August.
  • Handle: RePEc:plo:pone00:0133139
    DOI: 10.1371/journal.pone.0133139
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0133139
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0133139&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0133139?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sam Moore & Chris D. Evans & Susan E. Page & Mark H. Garnett & Tim G. Jones & Chris Freeman & Aljosja Hooijer & Andrew J. Wiltshire & Suwido H. Limin & Vincent Gauci, 2013. "Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes," Nature, Nature, vol. 493(7434), pages 660-663, January.
    2. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801.
    3. Susan E. Page & Florian Siegert & John O. Rieley & Hans-Dieter V. Boehm & Adi Jaya & Suwido Limin, 2002. "The amount of carbon released from peat and forest fires in Indonesia during 1997," Nature, Nature, vol. 420(6911), pages 61-65, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lykke E. Andersen & Anna Sophia Doyle & Susana del Granado & Juan Carlos Ledezma & Agnes Medinaceli & Montserrat Valdivia & Diana Weinhold, 2016. "Emisiones Netas de Carbono Provenientes de la Deforestación en Bolivia durante 1990-2000 y 2000-2010: Resultados de un modelo de “Contabilidad de Carbono”," Development Research Working Paper Series 02/2016, Institute for Advanced Development Studies.
    2. Jacob J Bukoski & Jeremy S Broadhead & Daniel C Donato & Daniel Murdiyarso & Timothy G Gregoire, 2017. "The Use of Mixed Effects Models for Obtaining Low-Cost Ecosystem Carbon Stock Estimates in Mangroves of the Asia-Pacific," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Greta C. Dargie & Ian T. Lawson & Tim J. Rayden & Lera Miles & Edward T. A. Mitchard & Susan E. Page & Yannick E. Bocko & Suspense A. Ifo & Simon L. Lewis, 2019. "Congo Basin peatlands: threats and conservation priorities," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(4), pages 669-686, April.
    2. Dislich, Claudia & Keyel, Alexander C. & Salecker, Jan & Kisel, Yael & Meyer, Katrin M. & Corre, Marife D. & Faust, Heiko & Hess, Bastian & Knohl, Alexander & Kreft, Holger & Meijide, Ana & Nurdiansya, 2015. "Ecosystem functions of oil palm plantations - a review," EFForTS Discussion Paper Series 16, University of Goettingen, Collaborative Research Centre 990 "EFForTS, Ecological and Socioeconomic Functions of Tropical Lowland Rainforest Transformation Systems (Sumatra, Indonesia)".
    3. Medrilzam, Medrilzam & Smith, Carl & Aziz, Ammar Abdul & Herbohn, John & Dargusch, Paul, 2017. "Smallholder Farmers and the Dynamics of Degradation of Peatland Ecosystems in Central Kalimantan, Indonesia," Ecological Economics, Elsevier, vol. 136(C), pages 101-113.
    4. Stéphane Hallegatte, 2008. "A Proposal for a New Prescriptive Discounting Scheme: The Intergenerational Discount Rate," Working Papers 2008.47, Fondazione Eni Enrico Mattei.
    5. van den Bergh, J.C.J.M. & Botzen, W.J.W., 2015. "Monetary valuation of the social cost of CO2 emissions: A critical survey," Ecological Economics, Elsevier, vol. 114(C), pages 33-46.
    6. Strand, Jon, 2011. "Carbon offsets with endogenous environmental policy," Energy Economics, Elsevier, vol. 33(2), pages 371-378, March.
    7. Stern, Nicholas, 2018. "Public economics as if time matters: Climate change and the dynamics of policy," Journal of Public Economics, Elsevier, vol. 162(C), pages 4-17.
    8. Lotze-Campen, Hermann & von Witzke, Harald & Noleppa, Steffen & Schwarz, Gerald, 2015. "Science for food, climate protection and welfare: An economic analysis of plant breeding research in Germany," Agricultural Systems, Elsevier, vol. 136(C), pages 79-84.
    9. Pycroft, Jonathan & Vergano, Lucia & Hope, Chris & Paci, Daniele & Ciscar, Juan Carlos, 2011. "A tale of tails: Uncertainty and the social cost of carbon dioxide," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 5, pages 1-29.
    10. Oliver Schenker, 2013. "Exchanging Goods and Damages: The Role of Trade on the Distribution of Climate Change Costs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(2), pages 261-282, February.
    11. Luigi Aldieri & Jonas Grafström & Kristoffer Sundström & Concetto Paolo Vinci, 2019. "Wind Power and Job Creation," Sustainability, MDPI, vol. 12(1), pages 1-23, December.
    12. Alejandro Lopez-Feldman, 2013. "Climate change, agriculture, and poverty: A household level analysis for rural Mexico," Economics Bulletin, AccessEcon, vol. 33(2), pages 1126-1139.
    13. Min Gong & David Krantz & Elke Weber, 2014. "Why Chinese discount future financial and environmental gains but not losses more than Americans," Journal of Risk and Uncertainty, Springer, vol. 49(2), pages 103-124, October.
    14. Söderholm, Patrik & Pettersson, Fredrik, 2008. "Climate policy and the social cost of power generation: Impacts of the Swedish national emissions target," Energy Policy, Elsevier, vol. 36(11), pages 4154-4158, November.
    15. Bikki Jaggi & Alessandra Allini & Riccardo Macchioni & Annamaria Zampella, 2018. "Do investors find carbon information useful? Evidence from Italian firms," Review of Quantitative Finance and Accounting, Springer, vol. 50(4), pages 1031-1056, May.
    16. Bommier, Antoine & Lanz, Bruno & Zuber, Stéphane, 2015. "Models-as-usual for unusual risks? On the value of catastrophic climate change," Journal of Environmental Economics and Management, Elsevier, vol. 74(C), pages 1-22.
    17. Steve Newbold & Charles Griffiths & Christopher C. Moore & Ann Wolverton & Elizabeth Kopits, 2010. "The "Social Cost of Carbon" Made Simple," NCEE Working Paper Series 201007, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Aug 2010.
    18. Simona Šarotar Žižek & Matjaž Mulej & Sonja Treven, 2010. "Requisite Holism Of Individuals As A Precondition For The Humankind’S Way Out From The 2008- Crisis," Analele Stiintifice ale Universitatii "Alexandru Ioan Cuza" din Iasi - Stiinte Economice (1954-2015), Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, vol. 57, pages 399-419, november.
    19. Tsai, Bi-Huei & Chang, Chih-Jen & Chang, Chun-Hsien, 2016. "Elucidating the consumption and CO2 emissions of fossil fuels and low-carbon energy in the United States using Lotka–Volterra models," Energy, Elsevier, vol. 100(C), pages 416-424.
    20. Otto Brøns-Petersen & Søren Havn Gjedsted, 2021. "Climate change and institutional change: what is the relative importance for economic performance?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(2), pages 333-360, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0133139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.