IDEAS home Printed from https://ideas.repec.org/a/plo/pcsy00/0000010.html
   My bibliography  Save this article

Pattern detection in bipartite networks: A review of terminology, applications, and methods

Author

Listed:
  • Zachary P Neal
  • Annabell Cadieux
  • Diego Garlaschelli
  • Nicholas J Gotelli
  • Fabio Saracco
  • Tiziano Squartini
  • Shade T Shutters
  • Werner Ulrich
  • Guanyang Wang
  • Giovanni Strona

Abstract

Rectangular association matrices with binary (0/1) entries are a common data structure in many research fields. Examples include ecology, economics, mathematics, physics, psychometrics, and others. Because their columns and rows are associated to distinct entities, these matrices can be equivalently expressed as bipartite networks that, in turn, can be projected onto pairs of unipartite networks. A variety of diversity statistics and network metrics can be used to quantify patterns in these matrices and networks. But, to be defined as such, what should these patterns be compared to? In all of these disciplines, researchers have recognized the necessity of comparing an empirical matrix to a benchmark ensemble of ‘null’ matrices created by randomizing certain elements of the original data. This common need has nevertheless promoted the independent development of methodologies by researchers who come from different backgrounds and use different terminology. Here, we provide a multidisciplinary review of randomization techniques and null models for matrices representing binary, bipartite networks. We aim at translating concepts from different technical domains to a common language that is accessible to a broad scientific audience. Specifically, after briefly reviewing examples of binary matrix structures encountered across different fields, we introduce the major approaches and strategies for randomizing these matrices. We then explore the details of and performance of specific techniques and discuss their limitations and computational challenges. In particular, we focus on the conceptual importance and implementation of structural constraints on the randomization, such as preserving row and/or columns sums of the original matrix in each of the randomized matrices. Our review serves both as a guide for empiricists in different disciplines, as well as a reference point for researchers working on theoretical and methodological developments in matrix randomization methods.

Suggested Citation

  • Zachary P Neal & Annabell Cadieux & Diego Garlaschelli & Nicholas J Gotelli & Fabio Saracco & Tiziano Squartini & Shade T Shutters & Werner Ulrich & Guanyang Wang & Giovanni Strona, 2024. "Pattern detection in bipartite networks: A review of terminology, applications, and methods," PLOS Complex Systems, Public Library of Science, vol. 1(2), pages 1-34, October.
  • Handle: RePEc:plo:pcsy00:0000010
    DOI: 10.1371/journal.pcsy.0000010
    as

    Download full text from publisher

    File URL: https://journals.plos.org/complexsystems/article?id=10.1371/journal.pcsy.0000010
    Download Restriction: no

    File URL: https://journals.plos.org/complexsystems/article/file?id=10.1371/journal.pcsy.0000010&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcsy.0000010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcsy00:0000010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: complexsystem (email available below). General contact details of provider: https://journals.plos.org/complexsystems/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.