IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1503.05098.html
   My bibliography  Save this paper

Randomizing bipartite networks: the case of the World Trade Web

Author

Listed:
  • Fabio Saracco
  • Riccardo Di Clemente
  • Andrea Gabrielli
  • Tiziano Squartini

Abstract

Within the last fifteen years, network theory has been successfully applied both to natural sciences and to socioeconomic disciplines. In particular, bipartite networks have been recognized to provide a particularly insightful representation of many systems, ranging from mutualistic networks in ecology to trade networks in economy, whence the need of a pattern detection-oriented analysis in order to identify statistically-significant structural properties. Such an analysis rests upon the definition of suitable null models, i.e. upon the choice of the portion of network structure to be preserved while randomizing everything else. However, quite surprisingly, little work has been done so far to define null models for real bipartite networks. The aim of the present work is to fill this gap, extending a recently-proposed method to randomize monopartite networks to bipartite networks. While the proposed formalism is perfectly general, we apply our method to the binary, undirected, bipartite representation of the World Trade Web, comparing the observed values of a number of structural quantities of interest with the expected ones, calculated via our randomization procedure. Interestingly, the behavior of the World Trade Web in this new representation is strongly different from the monopartite analogue, showing highly non-trivial patterns of self-organization.

Suggested Citation

  • Fabio Saracco & Riccardo Di Clemente & Andrea Gabrielli & Tiziano Squartini, 2015. "Randomizing bipartite networks: the case of the World Trade Web," Papers 1503.05098, arXiv.org, revised Jun 2015.
  • Handle: RePEc:arx:papers:1503.05098
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1503.05098
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1503.05098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.