IDEAS home Printed from https://ideas.repec.org/p/ssa/lemwps/2011-07.html
   My bibliography  Save this paper

Exact maximum-likelihood method to detect patterns in real networks

Author

Listed:
  • Tiziano Squartini
  • Diego Garlaschelli

Abstract

In order to detect patterns in real networks, randomized graph ensembles that preserve only part of the topology of an observed network are systematically used as fundamental null models. However, their generation is still problematic. The existing approaches are either computationally demanding and beyond analytic control, or analytically accessible but highly approximate. Here we propose a solution to this long-standing problem by introducing an exact and fast method that allows to obtain expectation values and standard deviations of any topological property analytically, for any binary, weighted, directed or undirected network. Remarkably, the time required to obtain the expectation value of any property is as short as that required to compute the same property on the single original network. Our method reveals that the null behavior of various correlation properties is different from what previously believed, and highly sensitive to the particular network considered. Moreover, our approach shows that important structural properties (such as the modularity used in community detection problems) are currently based on incorrect expressions, and provides the exact quantities that should replace them.

Suggested Citation

  • Tiziano Squartini & Diego Garlaschelli, 2011. "Exact maximum-likelihood method to detect patterns in real networks," LEM Papers Series 2011/07, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
  • Handle: RePEc:ssa:lemwps:2011/07
    as

    Download full text from publisher

    File URL: http://www.lem.sssup.it/WPLem/files/2011-07.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramadiah, Amanah & Caccioli, Fabio & Fricke, Daniel, 2020. "Reconstructing and stress testing credit networks," Journal of Economic Dynamics and Control, Elsevier, vol. 111(C).
    2. Carattini, Stefano & Fankhauser, Sam & Gao, Jianjian & Gennaioli, Caterina & Panzarasa, Pietro, 2023. "What does network analysis teach us about international environmental cooperation?," Ecological Economics, Elsevier, vol. 205(C).
    3. Marc van Kralingen & Diego Garlaschelli & Karolina Scholtus & Iman van Lelyveld, 2020. "Crowded trades, market clustering, and price instability," Papers 2002.03319, arXiv.org.
    4. Lin, Li & Guo, Xin-Yu, 2019. "Identifying fragility for the stock market: Perspective from the portfolio overlaps network," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 62(C), pages 132-151.
    5. Carolina Becatti & Guido Caldarelli & Renaud Lambiotte & Fabio Saracco, 2019. "Extracting significant signal of news consumption from social networks: the case of Twitter in Italian political elections," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-16, December.
    6. Assaf Almog & Rhys Bird & Diego Garlaschelli, 2015. "Enhanced Gravity Model of trade: reconciling macroeconomic and network models," Papers 1506.00348, arXiv.org, revised Feb 2019.
    7. Brandi, Giuseppe & Di Clemente, Riccardo & Cimini, Giulio, 2018. "Epidemics of liquidity shortages in interbank markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 255-267.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ssa:lemwps:2011/07. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/labssit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.