IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v193y2025ics0960077925000785.html
   My bibliography  Save this article

Spectral signatures of structural change in financial networks

Author

Listed:
  • Macchiati, Valentina
  • Marchese, Emiliano
  • Mazzarisi, Piero
  • Garlaschelli, Diego
  • Squartini, Tiziano

Abstract

The level of systemic risk in economic and financial systems is strongly determined by the structure of the underlying networks of interdependent entities that can propagate shocks and stresses. Since changes in network structure imply changes in risk levels, it is important to identify structural transitions potentially leading to system-wide crises. Methods have been proposed to assess whether a real-world network is in a (quasi-)stationary state by checking the consistency of its structural evolution with appropriate maximum-entropy ensembles of graphs. While previous analyses of this kind have focused on dyadic and triadic motifs, hence disregarding higher-order structures, here we consider closed walks of any length. Specifically, we study the ensemble properties of the spectral radius of random graph models calibrated on real-world evolving networks. Our approach is shown to work remarkably well for directed networks, both binary and weighted. As illustrative examples, we consider the Electronic Market for Interbank Deposit (e-MID), the Dutch Interbank Network (DIN) and the International Trade Network (ITN) in their evolution across the 2008 crisis. By monitoring the deviation of the spectral radius from its ensemble expectation, we find that the ITN remains in a (quasi-)equilibrium state throughout the period considered, while both the DIN and e-MID exhibit a clear out-of-equilibrium behaviour. The spectral deviation therefore captures ongoing topological changes, extending over all length scales, to provide a compact proxy of the resilience of economic and financial networks.

Suggested Citation

  • Macchiati, Valentina & Marchese, Emiliano & Mazzarisi, Piero & Garlaschelli, Diego & Squartini, Tiziano, 2025. "Spectral signatures of structural change in financial networks," Chaos, Solitons & Fractals, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:chsofr:v:193:y:2025:i:c:s0960077925000785
    DOI: 10.1016/j.chaos.2025.116065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925000785
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marco Bardoscia & Stefano Battiston & Fabio Caccioli & Guido Caldarelli, 2016. "Pathways towards instability in financial networks," Papers 1602.05883, arXiv.org, revised Feb 2017.
    2. Di Gangi, Domenico & Lillo, Fabrizio & Pirino, Davide, 2018. "Assessing systemic risk due to fire sales spillover through maximum entropy network reconstruction," Journal of Economic Dynamics and Control, Elsevier, vol. 94(C), pages 117-141.
    3. Fabio Caccioli & Paolo Barucca & Teruyoshi Kobayashi, 2018. "Network models of financial systemic risk: a review," Journal of Computational Social Science, Springer, vol. 1(1), pages 81-114, January.
    4. Valentina Macchiati & Piero Mazzarisi & Diego Garlaschelli, 2024. "Interbank network reconstruction enforcing density and reciprocity," Papers 2402.11136, arXiv.org, revised Jul 2024.
    5. L. Bargigli & G. di Iasio & L. Infante & F. Lillo & F. Pierobon, 2015. "The multiplex structure of interbank networks," Quantitative Finance, Taylor & Francis Journals, vol. 15(4), pages 673-691, April.
    6. Vasco M. Carvalho & Alireza Tahbaz-Salehi, 2019. "Production Networks: A Primer," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 635-663, August.
    7. Giulio Cimini & Tiziano Squartini & Diego Garlaschelli & Andrea Gabrielli, 2014. "Systemic risk analysis in reconstructed economic and financial networks," Papers 1411.7613, arXiv.org, revised May 2015.
    8. Tiziano Squartini & Diego Garlaschelli, 2011. "Exact maximum-likelihood method to detect patterns in real networks," LEM Papers Series 2011/07, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    9. Macchiati, Valentina & Mazzarisi, Piero & Garlaschelli, Diego, 2024. "Interbank network reconstruction enforcing density and reciprocity," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    10. Tiziano Squartini & Iman van Lelyveld & Diego Garlaschelli, 2013. "Early-warning signals of topological collapse in interbank networks," Papers 1302.2063, arXiv.org, revised Nov 2013.
    11. in ’t Veld, Daan & van Lelyveld, Iman, 2014. "Finding the core: Network structure in interbank markets," Journal of Banking & Finance, Elsevier, vol. 49(C), pages 27-40.
    12. Marco Bardoscia & Stefano Battiston & Fabio Caccioli & Guido Caldarelli, 2017. "Pathways towards instability in financial networks," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
    13. Amanah Ramadiah & Domenico Di Gangi & D. Ruggiero Lo Sardo & Valentina Macchiati & Tuan Pham Minh & Francesco Pinotti & Mateusz Wilinski & Paolo Barucca & Giulio Cimini, 2018. "Network Sensitivity of Systemic Risk," Papers 1805.04325, arXiv.org, revised Jun 2020.
    14. Domenico Di Gangi & Fabrizio Lillo & Davide Pirino, 2015. "Assessing systemic risk due to fire sales spillover through maximum entropy network reconstruction," Papers 1509.00607, arXiv.org, revised Jul 2018.
    15. Francesco Picciolo & Tiziano Squartini & Franco Ruzzenenti & Riccardo Basosi & Diego Garlaschelli, 2012. "The role of distances in the World Trade Web," Papers 1210.3269, arXiv.org, revised Oct 2012.
    16. Garlaschelli, Diego & Loffredo, Maria I., 2005. "Structure and evolution of the world trade network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 138-144.
    17. D. Garlaschelli & M. I. Loffredo, 2005. "Structure and Evolution of the World Trade Network," Papers physics/0502066, arXiv.org, revised May 2005.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Macchiati, Valentina & Mazzarisi, Piero & Garlaschelli, Diego, 2024. "Interbank network reconstruction enforcing density and reciprocity," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    2. Marco Bardoscia & Paolo Barucca & Stefano Battiston & Fabio Caccioli & Giulio Cimini & Diego Garlaschelli & Fabio Saracco & Tiziano Squartini & Guido Caldarelli, 2021. "The Physics of Financial Networks," Papers 2103.05623, arXiv.org.
    3. Tiziano Squartini & Guido Caldarelli & Giulio Cimini & Andrea Gabrielli & Diego Garlaschelli, 2018. "Reconstruction methods for networks: the case of economic and financial systems," Papers 1806.06941, arXiv.org.
    4. Fessina, Massimiliano & Zaccaria, Andrea & Cimini, Giulio & Squartini, Tiziano, 2024. "Pattern-detection in the global automotive industry: A manufacturer-supplier-product network analysis," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    5. Alessandro Ferracci & Giulio Cimini, 2021. "Systemic risk in interbank networks: disentangling balance sheets and network effects," Papers 2109.14360, arXiv.org, revised Sep 2022.
    6. Sadamori Kojaku & Giulio Cimini & Guido Caldarelli & Naoki Masuda, 2018. "Structural changes in the interbank market across the financial crisis from multiple core-periphery analysis," Papers 1802.05139, arXiv.org.
    7. Ramadiah, Amanah & Caccioli, Fabio & Fricke, Daniel, 2020. "Reconstructing and stress testing credit networks," Journal of Economic Dynamics and Control, Elsevier, vol. 111(C).
    8. Fabio Caccioli & Paolo Barucca & Teruyoshi Kobayashi, 2018. "Network models of financial systemic risk: a review," Journal of Computational Social Science, Springer, vol. 1(1), pages 81-114, January.
    9. Astudillo-Estévez, Pablo & Bacilieri, Andrea, 2023. "Reconstructing firm-level input-output networks from partial information," INET Oxford Working Papers 2023-05, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford, revised Jan 2025.
    10. Yan, Chun & Ding, Yi & Liu, Wei & Liu, Xinhong & Liu, Jiahui, 2023. "Multilayer interbank networks and systemic risk propagation: Evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 628(C).
    11. Cuba, Walter & Rodriguez-Martinez, Anahi & Chavez, Diego A. & Caccioli, Fabio & Martinez-Jaramillo, Serafin, 2021. "A network characterization of the interbank exposures in Peru," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 2(3).
    12. Carolina Becatti & Guido Caldarelli & Renaud Lambiotte & Fabio Saracco, 2019. "Extracting significant signal of news consumption from social networks: the case of Twitter in Italian political elections," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-16, December.
    13. Assaf Almog & Rhys Bird & Diego Garlaschelli, 2015. "Enhanced Gravity Model of trade: reconciling macroeconomic and network models," Papers 1506.00348, arXiv.org, revised Feb 2019.
    14. Brandi, Giuseppe & Di Clemente, Riccardo & Cimini, Giulio, 2018. "Epidemics of liquidity shortages in interbank markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 255-267.
    15. Ricciardi, Gianmarco & Montagna, Guido & Caldarelli, Guido & Cimini, Giulio, 2023. "Dimensional reduction of solvency contagion dynamics on financial networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    16. Daniel Grigat & Fabio Caccioli, 2017. "Reverse stress testing interbank networks," Papers 1702.08744, arXiv.org, revised Mar 2017.
    17. Khomami, Mohammad Mehdi Daliri & Meybodi, Mohammad Reza & Rezvanian, Alireza, 2024. "Exploring social networks through stochastic multilayer graph modeling," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    18. Kitamura, Toshihiko & Managi, Shunsuke, 2017. "Driving force and resistance: Network feature in oil trade," Applied Energy, Elsevier, vol. 208(C), pages 361-375.
    19. Bartesaghi, Paolo & Clemente, Gian Paolo & Grassi, Rosanna & Luu, Duc Thi, 2022. "The multilayer architecture of the global input-output network and its properties," Journal of Economic Behavior & Organization, Elsevier, vol. 204(C), pages 304-341.
    20. João Amador & Sónia Cabral, 2017. "Networks of Value-added Trade," The World Economy, Wiley Blackwell, vol. 40(7), pages 1291-1313, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:193:y:2025:i:c:s0960077925000785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.