IDEAS home Printed from https://ideas.repec.org/a/pal/jorapm/v16y2017i3d10.1057_s41272-016-0072-y.html
   My bibliography  Save this article

Are box office revenues equally unpredictable for all movies? Evidence from a Random forest-based model

Author

Listed:
  • Evgeny A. Antipov

    (National Research University Higher School of Economics)

  • Elena B. Pokryshevskaya

    (National Research University Higher School of Economics)

Abstract

In this study we develop a model for early box office receipts forecasting that, in addition to traditionally used regressors, uses several inputs that have never been used before, but appeared to be very useful predictors according to our variable importance analysis. New predictors account for the power of actors and directors, as well as for the intensity of competition at the time of movie release. Instead of Motion Picture of Association of America (MPAA) ratings commonly used in movie success prediction, textual information about the reasons for giving a movie its MPAA rating was formalized using word frequency and principal components analyses. The expert system is based on the Random forest algorithm, which outperformed a stepwise regression and a multilayer perceptron neural network. A regression tree-based diagnostic approach allowed us to detect the heterogeneity of model accuracy across segments of data and assess the applicability of the model to different movie types.

Suggested Citation

  • Evgeny A. Antipov & Elena B. Pokryshevskaya, 2017. "Are box office revenues equally unpredictable for all movies? Evidence from a Random forest-based model," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 16(3), pages 295-307, June.
  • Handle: RePEc:pal:jorapm:v:16:y:2017:i:3:d:10.1057_s41272-016-0072-y
    DOI: 10.1057/s41272-016-0072-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41272-016-0072-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1057/s41272-016-0072-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Taegu & Hong, Jungsik & Kang, Pilsung, 2015. "Box office forecasting using machine learning algorithms based on SNS data," International Journal of Forecasting, Elsevier, vol. 31(2), pages 364-390.
    2. Jehoshua Eliashberg & Sam K. Hui & Z. John Zhang, 2007. "From Story Line to Box Office: A New Approach for Green-Lighting Movie Scripts," Management Science, INFORMS, vol. 53(6), pages 881-893, June.
    3. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    4. Flores, Benito E, 1986. "A pragmatic view of accuracy measurement in forecasting," Omega, Elsevier, vol. 14(2), pages 93-98.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steven F. Lehrer & Tian Xie, 2022. "The Bigger Picture: Combining Econometrics with Analytics Improves Forecasts of Movie Success," Management Science, INFORMS, vol. 68(1), pages 189-210, January.
    2. Jordi McKenzie, 2023. "The economics of movies (revisited): A survey of recent literature," Journal of Economic Surveys, Wiley Blackwell, vol. 37(2), pages 480-525, April.
    3. Liza Lee & Ying-Sing Liu, 2024. "The impact of major infectious disease events and government relief packages on the film industry: evidence from Taiwan," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahman A. Prasojo & Karunika Diwyacitta & Suwarno & Harry Gumilang, 2017. "Transformer Paper Expected Life Estimation Using ANFIS Based on Oil Characteristics and Dissolved Gases (Case Study: Indonesian Transformers)," Energies, MDPI, vol. 10(8), pages 1-18, August.
    2. Nailya Maitanova & Jan-Simon Telle & Benedikt Hanke & Matthias Grottke & Thomas Schmidt & Karsten von Maydell & Carsten Agert, 2020. "A Machine Learning Approach to Low-Cost Photovoltaic Power Prediction Based on Publicly Available Weather Reports," Energies, MDPI, vol. 13(3), pages 1-23, February.
    3. Ioannis Nasios & Konstantinos Vogklis, 2023. "Blending gradient boosted trees and neural networks for point and probabilistic forecasting of hierarchical time series," Papers 2310.13029, arXiv.org.
    4. Seyma Caliskan Cavdar & Alev Dilek Aydin, 2015. "An Empirical Analysis for the Prediction of a Financial Crisis in Turkey through the Use of Forecast Error Measures," JRFM, MDPI, vol. 8(3), pages 1-18, August.
    5. Ronny Behrens & Natasha Zhang Foutz & Michael Franklin & Jannis Funk & Fernanda Gutierrez-Navratil & Julian Hofmann & Ulrike Leibfried, 2021. "Leveraging analytics to produce compelling and profitable film content," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 45(2), pages 171-211, June.
    6. Nasios, Ioannis & Vogklis, Konstantinos, 2022. "Blending gradient boosted trees and neural networks for point and probabilistic forecasting of hierarchical time series," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1448-1459.
    7. repec:prg:jnlcfu:v:2022:y:2022:i:1:id:572 is not listed on IDEAS
    8. Laurence T Kell & Iago Mosqueira & Henning Winker & Rishi Sharma & Toshihide Kitakado & Massimiliano Cardinale, 2024. "Empirical validation of integrated stock assessment models to ensuring risk equivalence: A pathway to resilient fisheries management," PLOS ONE, Public Library of Science, vol. 19(7), pages 1-21, July.
    9. Cabral, Joilson de Assis & Freitas Cabral, Maria Viviana de & Pereira Júnior, Amaro Olímpio, 2020. "Elasticity estimation and forecasting: An analysis of residential electricity demand in Brazil," Utilities Policy, Elsevier, vol. 66(C).
    10. Das, Prashant & Füss, Roland & Hanle, Benjamin & Russ, Isabel Nina, 2020. "The cross-over effect of irrational sentiments in housing, commercial property, and stock markets," Journal of Banking & Finance, Elsevier, vol. 114(C).
    11. Steven F. Lehrer & Tian Xie, 2022. "The Bigger Picture: Combining Econometrics with Analytics Improves Forecasts of Movie Success," Management Science, INFORMS, vol. 68(1), pages 189-210, January.
    12. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    13. Ioannis Badounas & Georgios Pitselis, 2020. "Loss Reserving Estimation With Correlated Run-Off Triangles in a Quantile Longitudinal Model," Risks, MDPI, vol. 8(1), pages 1-26, February.
    14. Chang, Andrew C. & Hanson, Tyler J., 2016. "The accuracy of forecasts prepared for the Federal Open Market Committee," Journal of Economics and Business, Elsevier, vol. 83(C), pages 23-43.
    15. Michael Kostmann & Wolfgang K. Härdle, 2019. "Forecasting in Blockchain-Based Local Energy Markets," Energies, MDPI, vol. 12(14), pages 1-27, July.
    16. Hayat, Aziz & Bhatti, M. Ishaq, 2013. "Masking of volatility by seasonal adjustment methods," Economic Modelling, Elsevier, vol. 33(C), pages 676-688.
    17. Schwenzow, Jasper & Hartmann, Jochen & Schikowsky, Amos & Heitmann, Mark, 2021. "Understanding videos at scale: How to extract insights for business research," Journal of Business Research, Elsevier, vol. 123(C), pages 367-379.
    18. Pankaj Kumar, 2021. "Deep Hawkes Process for High-Frequency Market Making," Papers 2109.15110, arXiv.org.
    19. Bloom, David E. & Canning, David & Fink, Gunther & Finlay, Jocelyn E., 2007. "Does age structure forecast economic growth?," International Journal of Forecasting, Elsevier, vol. 23(4), pages 569-585.
    20. Mengyang Wang & Hui Wang & Jiao Wang & Hongwei Liu & Rui Lu & Tongqing Duan & Xiaowen Gong & Siyuan Feng & Yuanyuan Liu & Zhuang Cui & Changping Li & Jun Ma, 2019. "A novel model for malaria prediction based on ensemble algorithms," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-15, December.
    21. Taleb, Nassim Nicholas, 2020. "On the statistical differences between binary forecasts and real-world payoffs," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1228-1240.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorapm:v:16:y:2017:i:3:d:10.1057_s41272-016-0072-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.