IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57388-3.html
   My bibliography  Save this article

Next-generation water-saving strategies for greenhouses using a nexus approach with modern technologies

Author

Listed:
  • Hao Zou

    (Shanghai Jiao Tong University
    MOE China
    National University of Singapore
    National University of Singapore)

  • Fan Wang

    (National University of Singapore
    National University of Singapore)

  • Ziya Zeng

    (Shanghai Jiao Tong University
    MOE China)

  • Jingling Zhu

    (National University of Singapore
    National University of Singapore)

  • Linyan Zha

    (Shanghai Jiao Tong University)

  • Danfeng Huang

    (Shanghai Jiao Tong University)

  • Jun Li

    (National University of Singapore
    National University of Singapore)

  • Ruzhu Wang

    (Shanghai Jiao Tong University
    MOE China)

Abstract

The escalating food and water crisis, propelled by population growth, urbanization, and climate change, demands a reimagining of agricultural practices. Traditional water-saving irrigation methods have reached their limits, necessitating the exploration of innovative approaches. This perspective explores the potential of utilizing excess light and water in greenhouse cultivation through advanced materials and engineering technologies. We investigate the potential of four key technologies—sorption-based atmosphere water harvesting (SAWH), superabsorbent polymer water holding materials (SPWH), radiative cooling (RC), and seawater desalination. The perspective proposes suitable application methods and future development directions for greenhouse water conservation, aiming to introduce novel water-saving strategies and smarter resource management.

Suggested Citation

  • Hao Zou & Fan Wang & Ziya Zeng & Jingling Zhu & Linyan Zha & Danfeng Huang & Jun Li & Ruzhu Wang, 2025. "Next-generation water-saving strategies for greenhouses using a nexus approach with modern technologies," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57388-3
    DOI: 10.1038/s41467-025-57388-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57388-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57388-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wang, Qiushi & Liang, Shen & Zhu, Ziye & Wu, Gang & Su, Yuehong & Zheng, Hongfei, 2019. "Performance of seawater-filling type planting system based on solar distillation process: Numerical and experimental investigation," Applied Energy, Elsevier, vol. 250(C), pages 1225-1234.
    2. Tingxian Li & Minqiang Wu & Jiaxing Xu & Ruxue Du & Taisen Yan & Pengfei Wang & Zhaoyuan Bai & Ruzhu Wang & Siqi Wang, 2022. "Simultaneous atmospheric water production and 24-hour power generation enabled by moisture-induced energy harvesting," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Sethi, V.P. & Sharma, S.K., 2007. "Greenhouse heating and cooling using aquifer water," Energy, Elsevier, vol. 32(8), pages 1414-1421.
    4. Peng Tao & George Ni & Chengyi Song & Wen Shang & Jianbo Wu & Jia Zhu & Gang Chen & Tao Deng, 2018. "Solar-driven interfacial evaporation," Nature Energy, Nature, vol. 3(12), pages 1031-1041, December.
    5. Carotti, Laura & Pistillo, Alessandro & Zauli, Ilaria & Meneghello, Davide & Martin, Michael & Pennisi, Giuseppina & Gianquinto, Giorgio & Orsini, Francesco, 2023. "Improving water use efficiency in vertical farming: Effects of growing systems, far-red radiation and planting density on lettuce cultivation," Agricultural Water Management, Elsevier, vol. 285(C).
    6. Jinlei Li & Yi Jiang & Jia Liu & Linsheng Wu & Ning Xu & Zhaoying Zhang & Dayang Zhao & Gang Li & Peng Wang & Wei Li & Bin Zhu & Yongguang Zhang & Jia Zhu, 2024. "A photosynthetically active radiative cooling film," Nature Sustainability, Nature, vol. 7(6), pages 786-795, June.
    7. Xinping Chen & Zhenling Cui & Mingsheng Fan & Peter Vitousek & Ming Zhao & Wenqi Ma & Zhenlin Wang & Weijian Zhang & Xiaoyuan Yan & Jianchang Yang & Xiping Deng & Qiang Gao & Qiang Zhang & Shiwei Guo , 2014. "Producing more grain with lower environmental costs," Nature, Nature, vol. 514(7523), pages 486-489, October.
    8. Yano, Akira & Cossu, Marco, 2019. "Energy sustainable greenhouse crop cultivation using photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 116-137.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Li & Dingwen Zhang & Ying Wen & Xiaoling Liu & Yi Zhang & Guangmei Wang, 2024. "Spatiotemporal Patterns and Driving Factors of Carbon Footprint in Coastal Saline Cropland Ecosystems: A Case Study of the Yellow River Delta, China," Land, MDPI, vol. 13(12), pages 1-18, December.
    2. Taotao Yang & Jixiang Zou & Longmei Wu & Xiaozhe Bao & Yu Jiang & Nan Zhang & Bin Zhang, 2024. "Experimental Warming Reduces the Grain Yield and Nitrogen Utilization Efficiency of Double-Cropping indica Rice in South China," Agriculture, MDPI, vol. 14(6), pages 1-12, June.
    3. Zhao, Zhanqing & Qin, Wei & Bai, Zhaohai & Ma, Lin, 2019. "Agricultural nitrogen and phosphorus emissions to water and their mitigation options in the Haihe Basin, China," Agricultural Water Management, Elsevier, vol. 212(C), pages 262-272.
    4. Lu, Jie & Bai, Zhaohai & Velthof, Gerard L. & Wu, Zhiguo & Chadwick, David & Ma, Lin, 2019. "Accumulation and leaching of nitrate in soils in wheat-maize production in China," Agricultural Water Management, Elsevier, vol. 212(C), pages 407-415.
    5. Ge, Quanwu & Ke, Zhixin & Liu, Yutong & Chai, Fu & Yang, Wenhua & Zhang, Zhili & Wang, Yang, 2023. "Low-carbon strategy of demand-based regulating heating and lighting for the heterogeneous environment in beijing Venlo-type greenhouse," Energy, Elsevier, vol. 267(C).
    6. Bruna Moreira & Alexandre Gonçalves & Luís Pinto & Miguel A. Prieto & Márcio Carocho & Cristina Caleja & Lillian Barros, 2024. "Intercropping Systems: An Opportunity for Environment Conservation within Nut Production," Agriculture, MDPI, vol. 14(7), pages 1-23, July.
    7. Siyu Zhang & Zhe Ji & Wu Jiao & Chengbo Shen & Yaojun Qin & Yunzhi Huang & Menghan Huang & Shuming Kang & Xuan Liu & Shunqi Li & Zulong Mo & Ying Yu & Bingyu Jiang & Yanan Tian & Longfei Wang & Qingxi, 2025. "Natural variation of OsWRKY23 drives difference in nitrate use efficiency between indica and japonica rice," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    8. Cai, Wei & Pan, Ying & Feng, Xiaming & Mu, Xiaowei & Hu, Weizhao & Song, Lei & Wang, Xin & Hu, Yuan, 2022. "Cicada wing-inspired solar transmittance enhancement and hydrophobicity design for graphene-based solar steam generation: A novel gas phase deposition approach," Applied Energy, Elsevier, vol. 320(C).
    9. Shenxiang Zhang & Xian Wei & Xue Cao & Meiwen Peng & Min Wang & Lin Jiang & Jian Jin, 2024. "Solar-driven membrane separation for direct lithium extraction from artificial salt-lake brine," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Wang, XiaoLong & Sun, GuoChen & Zhang, LinHua & Lei, WenJun & Zhang, WenKe & Li, HaoYi & Zhang, ChunYue & Guo, JingChenxi, 2023. "Application of green energy in smart rural passive heating: A case study of indoor temperature self-regulating greenhouse of winter in Jinan, China," Energy, Elsevier, vol. 278(C).
    11. Guo, Qijing & Yi, Hao & Jia, Feifei & Song, Shaoxian, 2022. "Vertical porous MoS2/hectorite double-layered aerogel as superior salt resistant and highly efficient solar steam generators," Renewable Energy, Elsevier, vol. 194(C), pages 68-79.
    12. Li, Mo & Fu, Qiang & Singh, Vijay P. & Liu, Dong & Li, Jiang, 2020. "Optimization of sustainable bioenergy production considering energy-food-water-land nexus and livestock manure under uncertainty," Agricultural Systems, Elsevier, vol. 184(C).
    13. Zhang, Bangbang & Li, Xian & Chen, Haibin & Niu, Wenhao & Kong, Xiangbin & Yu, Qiang & Zhao, Minjuan & Xia, Xianli, 2022. "Identifying opportunities to close yield gaps in China by use of certificated cultivars to estimate potential productivity," Land Use Policy, Elsevier, vol. 117(C).
    14. La Notte, Luca & Giordano, Lorena & Calabrò, Emanuele & Bedini, Roberto & Colla, Giuseppe & Puglisi, Giovanni & Reale, Andrea, 2020. "Hybrid and organic photovoltaics for greenhouse applications," Applied Energy, Elsevier, vol. 278(C).
    15. Yi Zhou & Tianpeng Ding & Jun Guo & Guoqiang Xu & Mingqiang Cheng & Chen Zhang & Xiao-Qiao Wang & Wanheng Lu & Wei Li Ong & Jiangyu Li & Jiaqing He & Cheng-Wei Qiu & Ghim Wei Ho, 2023. "Giant polarization ripple in transverse pyroelectricity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Qingzhen Zhu & Zhihao Zhu & Hengyuan Zhang & Yuanyuan Gao & Liping Chen, 2023. "Design of an Electronically Controlled Fertilization System for an Air-Assisted Side-Deep Fertilization Machine," Agriculture, MDPI, vol. 13(12), pages 1-12, November.
    17. Jun Li & Jiali Xing & Rui Ding & Wenjiao Shi & Xiaoli Shi & Xiaoqing Wang, 2023. "Systematic Evaluation of Nitrogen Application in the Production of Multiple Crops and Its Environmental Impacts in Fujian Province, China," Agriculture, MDPI, vol. 13(3), pages 1-17, March.
    18. Goharshadi, Elaheh K. & Vojdani Saghir, Siavosh & Niazi, Zohreh & Shafaee, Masoomeh & Sajjadizadeh, Halimeh-Sadat & Karimi-Nazarabad, Mahdi & Peighambari-kalat, Saeid & Goharshadi, Kimiya & Nejati, Ma, 2025. "Functionalized wood sponges: Advanced biomass materials for renewable energies, freshwater production, energy storage, and environmental remediation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
    19. Simin Deng & Xuezhi Tan & Bingjun Liu, 2025. "Impacts of changes in climate extremes on maize yields over Mainland China," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 17(1), pages 185-205, February.
    20. Renxuan Yuan & Huizeng Li & Zhipeng Zhao & An Li & Luanluan Xue & Kaixuan Li & Xiao Deng & Xinye Yu & Rujun Li & Quan Liu & Yanlin Song, 2024. "Hermetic hydrovoltaic cell sustained by internal water circulation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57388-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.