IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34385-4.html
   My bibliography  Save this article

Simultaneous atmospheric water production and 24-hour power generation enabled by moisture-induced energy harvesting

Author

Listed:
  • Tingxian Li

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University)

  • Minqiang Wu

    (Shanghai Jiao Tong University)

  • Jiaxing Xu

    (Shanghai Jiao Tong University)

  • Ruxue Du

    (Shanghai Jiao Tong University)

  • Taisen Yan

    (Shanghai Jiao Tong University)

  • Pengfei Wang

    (Shanghai Jiao Tong University)

  • Zhaoyuan Bai

    (Shanghai Jiao Tong University)

  • Ruzhu Wang

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University)

  • Siqi Wang

    (Shanghai Jiao Tong University)

Abstract

Water and electricity scarcity are two global challenges, especially in arid and remote areas. Harnessing ubiquitous moisture and sunlight for water and power generation is a sustainable route to address these challenges. Herein, we report a moisture-induced energy harvesting strategy to realize efficient sorption-based atmospheric water harvesting (SAWH) and 24-hour thermoelectric power generation (TEPG) by synergistically utilizing moisture-induced sorption/desorption heats of SAWH, solar energy in the daytime and radiative cooling in the nighttime. Notably, the synergistic effects significantly improve all-day thermoelectric power density (~346%) and accelerate atmospheric water harvesting compared with conventional designs. We further demonstrate moisture-induced energy harvesting for a hybrid SAWH-TEPG device, exhibiting high water production of 750 g m−2, together with impressive thermoelectric power density up to 685 mW m−2 in the daytime and 21 mW m−2 in the nighttime. Our work provides a promising approach to realizing sustainable water production and power generation at anytime and anywhere.

Suggested Citation

  • Tingxian Li & Minqiang Wu & Jiaxing Xu & Ruxue Du & Taisen Yan & Pengfei Wang & Zhaoyuan Bai & Ruzhu Wang & Siqi Wang, 2022. "Simultaneous atmospheric water production and 24-hour power generation enabled by moisture-induced energy harvesting," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34385-4
    DOI: 10.1038/s41467-022-34385-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34385-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34385-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peng Tao & George Ni & Chengyi Song & Wen Shang & Jianbo Wu & Jia Zhu & Gang Chen & Tao Deng, 2018. "Solar-driven interfacial evaporation," Nature Energy, Nature, vol. 3(12), pages 1031-1041, December.
    2. Wenbin Wang & Yusuf Shi & Chenlin Zhang & Seunghyun Hong & Le Shi & Jian Chang & Renyuan Li & Yong Jin & Chisiang Ong & Sifei Zhuo & Peng Wang, 2019. "Simultaneous production of fresh water and electricity via multistage solar photovoltaic membrane distillation," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    3. Sujing Wang & Ji Sun Lee & Mohammad Wahiduzzaman & Jaedeuk Park & Mégane Muschi & Charlotte Martineau-Corcos & Antoine Tissot & Kyung Ho Cho & Jérôme Marrot & William Shepard & Guillaume Maurin & Jong, 2018. "A robust large-pore zirconium carboxylate metal–organic framework for energy-efficient water-sorption-driven refrigeration," Nature Energy, Nature, vol. 3(11), pages 985-993, November.
    4. Yongmei Zheng & Hao Bai & Zhongbing Huang & Xuelin Tian & Fu-Qiang Nie & Yong Zhao & Jin Zhai & Lei Jiang, 2010. "Directional water collection on wetted spider silk," Nature, Nature, vol. 463(7281), pages 640-643, February.
    5. Jackson Lord & Ashley Thomas & Neil Treat & Matthew Forkin & Robert Bain & Pierre Dulac & Cyrus H. Behroozi & Tilek Mamutov & Jillia Fongheiser & Nicole Kobilansky & Shane Washburn & Claudia Truesdell, 2021. "Global potential for harvesting drinking water from air using solar energy," Nature, Nature, vol. 598(7882), pages 611-617, October.
    6. Hyunho Kim & Sameer R. Rao & Eugene A. Kapustin & Lin Zhao & Sungwoo Yang & Omar M. Yaghi & Evelyn N. Wang, 2018. "Adsorption-based atmospheric water harvesting device for arid climates," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    7. Renyuan Li & Yusuf Shi & Mengchun Wu & Seunghyun Hong & Peng Wang, 2020. "Photovoltaic panel cooling by atmospheric water sorption–evaporation cycle," Nature Sustainability, Nature, vol. 3(8), pages 636-643, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chao, Jingwei & Xu, Jiaxing & Yan, Taisen & Xiang, Shizhao & Bai, Zhaoyuan & Wang, Ruzhu & Li, Tingxian, 2023. "Performance analysis of sorption thermal battery for high-density cold energy storage enabled by novel tube-free evaporator," Energy, Elsevier, vol. 273(C).
    2. Zhao, Bin & Liu, Jie & Hu, Mingke & Ao, Xianze & Li, Lanxin & Xuan, Qingdong & Pei, Gang, 2023. "Performance analysis of a broadband selective absorber/emitter for hybrid utilization of solar thermal and radiative cooling," Renewable Energy, Elsevier, vol. 205(C), pages 763-771.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He Shan & Chunfeng Li & Zhihui Chen & Wenjun Ying & Primož Poredoš & Zhanyu Ye & Quanwen Pan & Jiayun Wang & Ruzhu Wang, 2022. "Exceptional water production yield enabled by batch-processed portable water harvester in semi-arid climate," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Youhong Guo & Weixin Guan & Chuxin Lei & Hengyi Lu & Wen Shi & Guihua Yu, 2022. "Scalable super hygroscopic polymer films for sustainable moisture harvesting in arid environments," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Ritwick Ghosh & Adrien Baut & Giorgio Belleri & Michael Kappl & Hans-Jürgen Butt & Thomas M. Schutzius, 2023. "Photocatalytically reactive surfaces for simultaneous water harvesting and treatment," Nature Sustainability, Nature, vol. 6(12), pages 1663-1672, December.
    4. Husam A. Almassad & Rada I. Abaza & Lama Siwwan & Bassem Al-Maythalony & Kyle E. Cordova, 2022. "Environmentally adaptive MOF-based device enables continuous self-optimizing atmospheric water harvesting," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Zhang, Lenan & Xu, Zhenyuan & Bhatia, Bikram & Li, Bangjun & Zhao, Lin & Wang, Evelyn N., 2020. "Modeling and performance analysis of high-efficiency thermally-localized multistage solar stills," Applied Energy, Elsevier, vol. 266(C).
    6. Yajie Hu & Hongyun Ma & Mingmao Wu & Tengyu Lin & Houze Yao & Feng Liu & Huhu Cheng & Liangti Qu, 2022. "A reconfigurable and magnetically responsive assembly for dynamic solar steam generation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Lenan Zhang & Xiangyu Li & Yang Zhong & Arny Leroy & Zhenyuan Xu & Lin Zhao & Evelyn N. Wang, 2022. "Highly efficient and salt rejecting solar evaporation via a wick-free confined water layer," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Gan Huang & Jingyuan Xu & Christos N. Markides, 2023. "High-efficiency bio-inspired hybrid multi-generation photovoltaic leaf," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Huang, Qichen & Liang, Xuechen & Yan, Chongyuan & Liu, Yizhen, 2021. "Review of interface solar-driven steam generation systems: High-efficiency strategies, applications and challenges," Applied Energy, Elsevier, vol. 283(C).
    10. Tashtoush, Bourhan & Alshoubaki, Anas, 2023. "Atmospheric water harvesting: A review of techniques, performance, renewable energy solutions, and feasibility," Energy, Elsevier, vol. 280(C).
    11. Al-Amri, Fahad & Saeed, Farooq & Mujeebu, Muhammad Abdul, 2022. "Novel dual-function racking structure for passive cooling of solar PV panels –thermal performance analysis," Renewable Energy, Elsevier, vol. 198(C), pages 100-113.
    12. Chen, W.D. & Vivekh, P. & Liu, M.Z. & Kumja, M. & Chua, K.J., 2021. "Energy improvement and performance prediction of desiccant coated dehumidifiers based on dimensional and scaling analysis," Applied Energy, Elsevier, vol. 303(C).
    13. Guo, Qijing & Yi, Hao & Jia, Feifei & Song, Shaoxian, 2022. "Vertical porous MoS2/hectorite double-layered aerogel as superior salt resistant and highly efficient solar steam generators," Renewable Energy, Elsevier, vol. 194(C), pages 68-79.
    14. Haohao Gu & Kaixin Meng & Ruowei Yuan & Siyang Xiao & Yuying Shan & Rui Zhu & Yajun Deng & Xiaojin Luo & Ruijie Li & Lei Liu & Xu Chen & Yuping Shi & Xiaodong Wang & Chuanhua Duan & Hao Wang, 2024. "Rewritable printing of ionic liquid nanofilm utilizing focused ion beam induced film wetting," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. Zu, Kan & Qin, Menghao, 2021. "Experimental and modeling investigation of water adsorption of hydrophilic carboxylate-based MOF for indoor moisture control," Energy, Elsevier, vol. 228(C).
    16. Zhuangzhi Sun & Chuanlong Han & Shouwei Gao & Zhaoxin Li & Mingxing Jing & Haipeng Yu & Zuankai Wang, 2022. "Achieving efficient power generation by designing bioinspired and multi-layered interfacial evaporator," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Su, Jinbu & Zhang, Pengkui & Yang, Rui & Wang, Boli & Zhao, Heng & Wang, Weike & Wang, Chengbing, 2022. "MXene-based flexible and washable photothermal fabrics for efficiently continuous solar-driven evaporation and desalination of seawater," Renewable Energy, Elsevier, vol. 195(C), pages 407-415.
    18. Shan, He & Poredoš, Primož & Zou, Hao & Lv, Haotian & Wang, Ruzhu, 2023. "Perspectives for urban microenvironment sustainability enabled by decentralized water-energy-food harvesting," Energy, Elsevier, vol. 282(C).
    19. Huang, Jian & Hu, Yanwei & Bai, Yijie & He, Yurong & Zhu, Jiaqi, 2020. "Solar membrane distillation enhancement through thermal concentration," Energy, Elsevier, vol. 211(C).
    20. Karmakar, Avishek & Prabakaran, Vivekh & Zhao, Dan & Chua, Kian Jon, 2020. "A review of metal-organic frameworks (MOFs) as energy-efficient desiccants for adsorption driven heat-transformation applications," Applied Energy, Elsevier, vol. 269(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34385-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.