IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-03162-7.html
   My bibliography  Save this article

Adsorption-based atmospheric water harvesting device for arid climates

Author

Listed:
  • Hyunho Kim

    (Massachusetts Institute of Technology)

  • Sameer R. Rao

    (Massachusetts Institute of Technology)

  • Eugene A. Kapustin

    (University of California–Berkeley
    Lawrence Berkeley National Laboratory)

  • Lin Zhao

    (Massachusetts Institute of Technology)

  • Sungwoo Yang

    (Massachusetts Institute of Technology)

  • Omar M. Yaghi

    (University of California–Berkeley
    Lawrence Berkeley National Laboratory
    King Abdulaziz City for Science and Technology (KACST))

  • Evelyn N. Wang

    (Massachusetts Institute of Technology)

Abstract

Water scarcity is a particularly severe challenge in arid and desert climates. While a substantial amount of water is present in the form of vapour in the atmosphere, harvesting this water by state-of-the-art dewing technology can be extremely energy intensive and impractical, particularly when the relative humidity (RH) is low (i.e., below ~40% RH). In contrast, atmospheric water generators that utilise sorbents enable capture of vapour at low RH conditions and can be driven by the abundant source of solar-thermal energy with higher efficiency. Here, we demonstrate an air-cooled sorbent-based atmospheric water harvesting device using the metal−organic framework (MOF)-801 [Zr6O4(OH)4(fumarate)6] operating in an exceptionally arid climate (10–40% RH) and sub-zero dew points (Tempe, Arizona, USA) with a thermal efficiency (solar input to water conversion) of ~14%. We predict that this device delivered over 0.25 L of water per kg of MOF for a single daily cycle.

Suggested Citation

  • Hyunho Kim & Sameer R. Rao & Eugene A. Kapustin & Lin Zhao & Sungwoo Yang & Omar M. Yaghi & Evelyn N. Wang, 2018. "Adsorption-based atmospheric water harvesting device for arid climates," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03162-7
    DOI: 10.1038/s41467-018-03162-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-03162-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-03162-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shafeian, Nafise & Ranjbar, A.A. & Gorji, Tahereh B., 2022. "Progress in atmospheric water generation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Karmakar, Avishek & Prabakaran, Vivekh & Zhao, Dan & Chua, Kian Jon, 2020. "A review of metal-organic frameworks (MOFs) as energy-efficient desiccants for adsorption driven heat-transformation applications," Applied Energy, Elsevier, vol. 269(C).
    3. Teicht, Christian, 2023. "An easy-to-use modification of the potential theory of adsorption and creation of an adsorbent data base," Energy, Elsevier, vol. 263(PD).
    4. Youhong Guo & Weixin Guan & Chuxin Lei & Hengyi Lu & Wen Shi & Guihua Yu, 2022. "Scalable super hygroscopic polymer films for sustainable moisture harvesting in arid environments," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. Husam A. Almassad & Rada I. Abaza & Lama Siwwan & Bassem Al-Maythalony & Kyle E. Cordova, 2022. "Environmentally adaptive MOF-based device enables continuous self-optimizing atmospheric water harvesting," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Maher, Hisham & Rupam, Tahmid Hasan & Rocky, Kaiser Ahmed & Bassiouny, Ramadan & Saha, Bidyut Baran, 2022. "Silica gel-MIL 100(Fe) composite adsorbents for ultra-low heat-driven atmospheric water harvester," Energy, Elsevier, vol. 238(PB).
    7. Tingxian Li & Minqiang Wu & Jiaxing Xu & Ruxue Du & Taisen Yan & Pengfei Wang & Zhaoyuan Bai & Ruzhu Wang & Siqi Wang, 2022. "Simultaneous atmospheric water production and 24-hour power generation enabled by moisture-induced energy harvesting," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Ritwick Ghosh & Adrien Baut & Giorgio Belleri & Michael Kappl & Hans-Jürgen Butt & Thomas M. Schutzius, 2023. "Photocatalytically reactive surfaces for simultaneous water harvesting and treatment," Nature Sustainability, Nature, vol. 6(12), pages 1663-1672, December.
    9. Agrawal, Anshu & Kumar, Amit & Parekh, A.D., 2023. "Experimental investigation of solar driven atmospheric water generation system based on air-to-air heat exchanger," Energy, Elsevier, vol. 271(C).
    10. Chaitanya, Bathina & Bahadur, Vaibhav & Thakur, Ajay D. & Raj, Rishi, 2018. "Biomass-gasification-based atmospheric water harvesting in India," Energy, Elsevier, vol. 165(PB), pages 610-621.
    11. Tashtoush, Bourhan & Alshoubaki, Anas, 2023. "Atmospheric water harvesting: A review of techniques, performance, renewable energy solutions, and feasibility," Energy, Elsevier, vol. 280(C).
    12. Tamerlan Srymbetov & Albina Jetybayeva & Dinara Dikhanbayeva & Luis Rojas‐Solórzano, 2023. "Mapping non‐conventional atmospheric drinking‐water harvesting opportunities in Central Eurasia: The case of Kazakhstan," Natural Resources Forum, Blackwell Publishing, vol. 47(1), pages 87-113, February.
    13. Gentile, Vincenzo & Bozlar, Michael & Meggers, Forrest & Simonetti, Marco, 2022. "Liter-scale atmospheric water harvesting for dry climates driven by low temperature solar heat," Energy, Elsevier, vol. 254(PB).
    14. Jining Guo & Yuecheng Zhang & Ali Zavabeti & Kaifei Chen & Yalou Guo & Guoping Hu & Xiaolei Fan & Gang Kevin Li, 2022. "Hydrogen production from the air," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Nicholas Gurieff & Donna Green & Ilpo Koskinen & Mathew Lipson & Mark Baldry & Andrew Maddocks & Chris Menictas & Jens Noack & Behdad Moghtaderi & Elham Doroodchi, 2020. "Healthy Power: Reimagining Hospitals as Sustainable Energy Hubs," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    16. Wang, Wenwen & Xie, Sitao & Pan, Quanwen & Dai, Yanjun & Wang, Ruzhu & Ge, Tianshu, 2021. "Air-cooled adsorption-based device for harvesting water from island air," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    17. Katramiz, Elvire & Al Jebaei, Hussein & Alotaibi, Sorour & Chakroun, Walid & Ghaddar, Nesreen & Ghali, Kamel, 2020. "Sustainable cooling system for Kuwait hot climate combining diurnal radiative cooling and indirect evaporative cooling system," Energy, Elsevier, vol. 213(C).
    18. He Shan & Chunfeng Li & Zhihui Chen & Wenjun Ying & Primož Poredoš & Zhanyu Ye & Quanwen Pan & Jiayun Wang & Ruzhu Wang, 2022. "Exceptional water production yield enabled by batch-processed portable water harvester in semi-arid climate," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03162-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.