IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v295y2024ics0360544224006790.html
   My bibliography  Save this article

Analytical and experimental analyses on cooling performances of radiative SkyCool radiators with various interior flowing channels

Author

Listed:
  • Jia, Linrui
  • Lu, Lin
  • Gong, Quan
  • Jiao, Kai

Abstract

This study presents an analytical model for the radiative SkyCool radiators (RSCR) with various interior flowing channels by using Laplace transformations. Moreover, the convolution theory is applied to solve the problem of nonuniform temperature distribution on the RSCR. Then, an outdoor experiment is carried out to verify the proposed model. Subsequently, the influence of different channel geometries, flow rates, tilt angles and wind velocities on the cooling performances of RSCRs are investigated. The results indicate that increasing the RSCR's length, enlarging the pipe spacing, and decreasing the flow rate and thickness of RSCR can definitely intensify the cooling performances. The application suggestions for S-channel RSCR (SRSCR) and I-channel RSCR (IRSCR) are given. When the pipe spacing ratio is smaller than five, the IRSCR is recommended because of lower thermal interferences. By contrast, SRSCR is recommended once the dimensionless pipe spacing is greater than ten. For cases with smaller tilt angles but larger wind velocities, IRSCR is suggested, while SRSCR is prioritized for cases with opposite conditions. This research provides an effective analytical tool in the evaluation of cooling power generation by producing cold water, contributing valuable insights for the optimization of cooling efficiencies of RSCRs under varied configuration scenarios.

Suggested Citation

  • Jia, Linrui & Lu, Lin & Gong, Quan & Jiao, Kai, 2024. "Analytical and experimental analyses on cooling performances of radiative SkyCool radiators with various interior flowing channels," Energy, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224006790
    DOI: 10.1016/j.energy.2024.130907
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224006790
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130907?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224006790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.