IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics0360544224007436.html
   My bibliography  Save this article

Performance analysis of radiative cooling combined with photovoltaic-driven thermoelectric cooling system in practical application

Author

Listed:
  • Lv, Song
  • Zhang, Mingming
  • Tian, Junwei
  • Zhang, Zexu
  • Duan, Zhiyu
  • Wu, Yangyang
  • Deng, Yirong

Abstract

Since the energy crisis and global warming are always problems that people have to face, non-polluting and non-energy consuming cooling technology has become a research hotspot. In this study, a strategy combining solar photovoltaic, radiative cooling, and thermoelectric cooling (PVRC-TEC) is proposed to realize the adaptive regulation of heat load, which greatly achieves 24 h of uninterrupted cooling and saves power consumption and achieves zero emission and zero pollution. Both simulation and experimental methodologies were employed to evaluate the performance of PVRC-TEC system. Additionally, a case study was conducted on a 16 m2 building. It is shown that the PVRC-TEC system had higher performance when the area ratio of photovoltaic cells to radiative cooling films was 0.3 and the number of thermoelectric cooling modules was 6. The average cooling power of the system is 8709.88W, which is 120.8% of that of the commercial air conditioner. Compared with the commercial air conditioners, the equipment cost required by this system can save 14807.27 ¥, which is 64.4% of air-conditioning costs. The PVRC-TEC system can fully meet the required daily cooling capacity. In practical application, it has great potential and advantages, providing potential solutions to the energy crisis and global warming.

Suggested Citation

  • Lv, Song & Zhang, Mingming & Tian, Junwei & Zhang, Zexu & Duan, Zhiyu & Wu, Yangyang & Deng, Yirong, 2024. "Performance analysis of radiative cooling combined with photovoltaic-driven thermoelectric cooling system in practical application," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224007436
    DOI: 10.1016/j.energy.2024.130971
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224007436
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130971?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224007436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.