IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v212y2019icp407-415.html
   My bibliography  Save this article

Accumulation and leaching of nitrate in soils in wheat-maize production in China

Author

Listed:
  • Lu, Jie
  • Bai, Zhaohai
  • Velthof, Gerard L.
  • Wu, Zhiguo
  • Chadwick, David
  • Ma, Lin

Abstract

Application rates of fertilizers in China often exceed crop requirements, resulting in high accumulation of nitrate (NO3) in the soil. Nitrate that has accumulated in soils is highly prone to leaching, directly threatening the quality of groundwater. A study was conducted to assess the magnitude of NO3 accumulation and leaching in China, to identify factors controlling NO3 accumulation and leaching, and to develop strategies that can be used to minimize NO3 leaching. Data were compiled from 212 studies conducted in China, amounting to 1077 observations of the NO3 content of the 0–100 cm soil profile in wheat and maize fields after harvest. Leaching of NO3 was significantly correlated with NO3 accumulation in the soil. NO3 leaching increased with 0.058 and 0.34 kg NO3-N ha−1 per season for wheat and maize, respectively, for every 1 kg ha-1 increase in NO3-N accumulation in 0–100 cm. This mainly related to lower precipitation during the wheat season and intensive rainfall in the maize season. Accumulation of NO3 in maize systems was 50% lower than for wheat when fertilized at the same rate, due to differences in rainfall between seasons. Soil NO3 accumulation was higher in heavy textured soils than in freely draining lighter textured soils, as most of NO3 leached out of 0–100 cm soil in lighter textured soils. Compared to flood irrigation, sprinkler irrigation increased NO3 accumulation by 17% and 152% for wheat and maize, respectively, due to lower irrigation and leaching rate. The level of nitrate accumulation in Chinese arable soils has become a significant hazard to drinking water, so good agricultural management is essential. Soil NO3 accumulation and leaching in China can be reduced by source and process control, such as reducing fertilizer application, using slow or controlled release forms of fertilizers, and regulating irrigation.

Suggested Citation

  • Lu, Jie & Bai, Zhaohai & Velthof, Gerard L. & Wu, Zhiguo & Chadwick, David & Ma, Lin, 2019. "Accumulation and leaching of nitrate in soils in wheat-maize production in China," Agricultural Water Management, Elsevier, vol. 212(C), pages 407-415.
  • Handle: RePEc:eee:agiwat:v:212:y:2019:i:c:p:407-415
    DOI: 10.1016/j.agwat.2018.08.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418308783
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.08.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhenling Cui & Hongyan Zhang & Xinping Chen & Chaochun Zhang & Wenqi Ma & Chengdong Huang & Weifeng Zhang & Guohua Mi & Yuxin Miao & Xiaolin Li & Qiang Gao & Jianchang Yang & Zhaohui Wang & Youliang Y, 2018. "Pursuing sustainable productivity with millions of smallholder farmers," Nature, Nature, vol. 555(7696), pages 363-366, March.
    2. Xinping Chen & Zhenling Cui & Mingsheng Fan & Peter Vitousek & Ming Zhao & Wenqi Ma & Zhenlin Wang & Weijian Zhang & Xiaoyuan Yan & Jianchang Yang & Xiping Deng & Qiang Gao & Qiang Zhang & Shiwei Guo , 2014. "Producing more grain with lower environmental costs," Nature, Nature, vol. 514(7523), pages 486-489, October.
    3. Fang, Q. & Ma, L. & Yu, Q. & Ahuja, L.R. & Malone, R.W. & Hoogenboom, G., 2010. "Irrigation strategies to improve the water use efficiency of wheat-maize double cropping systems in North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1165-1174, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuangshuang Xiao & Xiajiao Liu & Wei Zhang & Yingying Ye & Wurong Chen & Kelin Wang, 2022. "Tillage-Induced Fragmentation of Large Soil Macroaggregates Increases Nitrogen Leaching in a Subtropical Karst Region," Land, MDPI, vol. 11(10), pages 1-13, September.
    2. Li, Haoran & Wang, Hongguang & Fang, Qin & Jia, Bin & Li, Dongxiao & He, Jianning & Li, Ruiqi, 2023. "Effects of irrigation and nitrogen application on NO3--N distribution in soil, nitrogen absorption, utilization and translocation by winter wheat," Agricultural Water Management, Elsevier, vol. 276(C).
    3. Zhao, Chenhao & Zhang, Lina & Zhang, Qiang & Wang, Jun & Wang, Shengsen & Zhang, Min & Liu, Zhiguang, 2022. "The effects of bio-based superabsorbent polymers on the water/nutrient retention characteristics and agricultural productivity of a saline soil from the Yellow River Basin, China," Agricultural Water Management, Elsevier, vol. 261(C).
    4. Li, Yue & Xu, Xu & Hu, Min & Chen, Zhijun & Tan, Junwei & Liu, Liu & Xiong, Yunwu & Huang, Quanzhong & Huang, Guanhua, 2023. "Modeling water−salt−nitrogen dynamics and crop growth of saline maize farmland in Northwest China: Searching for appropriate irrigation and N fertilization strategies," Agricultural Water Management, Elsevier, vol. 282(C).
    5. Shen, Hongzheng & Gao, Yunhe & Sun, Kexin & Gu, Yuhui & Ma, Xiaoyi, 2023. "Effects of differential irrigation and nitrogen reduction replacement on winter wheat yield and water productivity and nitrogen-use efficiency," Agricultural Water Management, Elsevier, vol. 282(C).
    6. Liu, Fei & Zhu, Qing & Zhou, Zhiwen & Liao, Kaihua & Lai, Xiaoming, 2022. "Soil nitrate leaching of tea plantation and its responses to seasonal drought and wetness scenarios," Agricultural Water Management, Elsevier, vol. 260(C).
    7. Li, Yue & Huang, Guanhua & Chen, Zhijun & Xiong, Yuwu & Huang, Quanzhong & Xu, Xu & Huo, Zailin, 2022. "Effects of irrigation and fertilization on grain yield, water and nitrogen dynamics and their use efficiency of spring wheat farmland in an arid agricultural watershed of Northwest China," Agricultural Water Management, Elsevier, vol. 260(C).
    8. Yan, Fulai & Zhang, Fucang & Fan, Xingke & Fan, Junliang & Wang, Ying & Zou, Haiyang & Wang, Haidong & Li, Guodong, 2021. "Determining irrigation amount and fertilization rate to simultaneously optimize grain yield, grain nitrogen accumulation and economic benefit of drip-fertigated spring maize in northwest China," Agricultural Water Management, Elsevier, vol. 243(C).
    9. Lu, Junsheng & Xiang, Youzhen & Fan, Junliang & Zhang, Fucang & Hu, Tiantian, 2021. "Sustainable high grain yield, nitrogen use efficiency and water productivity can be achieved in wheat-maize rotation system by changing irrigation and fertilization strategy," Agricultural Water Management, Elsevier, vol. 258(C).
    10. Xiulu Sun & Yizan Li & Marius Heinen & Henk Ritzema & Petra Hellegers & Jos van Dam, 2022. "Fertigation Strategies to Improve Water and Nitrogen Use Efficiency in Surface Irrigation System in the North China Plain," Agriculture, MDPI, vol. 13(1), pages 1-23, December.
    11. Jia, Dianyong & Dai, Xinglong & Xie, Yuli & He, Mingrong, 2021. "Alternate furrow irrigation improves grain yield and nitrogen use efficiency in winter wheat," Agricultural Water Management, Elsevier, vol. 244(C).
    12. Du, Huiying & Gao, Wenxuan & Li, Jiajia & Shen, Shizhou & Wang, Feng & Fu, Li & Zhang, Keqiang, 2019. "Effects of digested biogas slurry applicationmixed with irrigation water on nitrate leaching during wheat-maize rotation in the North China Plain," Agricultural Water Management, Elsevier, vol. 213(C), pages 882-893.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Bangbang & Li, Xian & Chen, Haibin & Niu, Wenhao & Kong, Xiangbin & Yu, Qiang & Zhao, Minjuan & Xia, Xianli, 2022. "Identifying opportunities to close yield gaps in China by use of certificated cultivars to estimate potential productivity," Land Use Policy, Elsevier, vol. 117(C).
    2. Zhuang, Minghao & Liu, Yize & Yang, Yi & Zhang, Qingsong & Ying, Hao & Yin, Yulong & Cui, Zhenling, 2022. "The sustainability of staple crops in China can be substantially improved through localized strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Wang, Linlin & Li, Lingling & Xie, Junhong & Luo, Zhuzhu & Sumera, Anwar & Zechariah, Effah & Fudjoe, Setor Kwami & Palta, Jairo A. & Chen, Yinglong, 2022. "Does plastic mulching reduce water footprint in field crops in China? A meta-analysis," Agricultural Water Management, Elsevier, vol. 260(C).
    4. Bo Sun & Yongming Luo & Dianlin Yang & Jingsong Yang & Yuguo Zhao & Jiabao Zhang, 2023. "Coordinative Management of Soil Resources and Agricultural Farmland Environment for Food Security and Sustainable Development in China," IJERPH, MDPI, vol. 20(4), pages 1-16, February.
    5. Shilei Cui & Yajuan Li & Xiaoqiang Jiao & Dong Zhang, 2022. "Hierarchical Linkage between the Basic Characteristics of Smallholders and Technology Awareness Determines Small-Holders’ Willingness to Adopt Green Production Technology," Agriculture, MDPI, vol. 12(8), pages 1-17, August.
    6. Qiu, Weihong & Ma, Xiaolong & Cao, Hanbing & Huang, Tingmiao & She, Xu & Huang, Ming & Wang, Zhaohui & Liu, Jinshan, 2022. "Improving wheat yield by optimizing seeding and fertilizer rates based on precipitation in the summer fallow season in drylands of the Loess Plateau," Agricultural Water Management, Elsevier, vol. 264(C).
    7. Xu, Zhuo & He, Ping & Yin, Xinyou & Huang, Qiuhong & Ding, Wencheng & Xu, Xinpeng & Struik, Paul C., 2023. "Can the advisory system Nutrient Expert® balance productivity, profitability and sustainability for rice production systems in China?," Agricultural Systems, Elsevier, vol. 205(C).
    8. Li, Jianzheng & Wang, Ligang & Luo, Zhongkui & Wang, Enli & Wang, Guocheng & Zhou, Han & Li, Hu & Xu, Shiwei, 2021. "Reducing N2O emissions while maintaining yield in a wheat–maize rotation system modelled by APSIM," Agricultural Systems, Elsevier, vol. 194(C).
    9. Wang, Hongzhang & Ren, Hao & Zhang, Lihua & Zhao, Yali & Liu, Yuee & He, Qijin & Li, Geng & Han, Kun & Zhang, Jiwang & Zhao, Bin & Ren, Baizhao & Liu, Peng, 2023. "A sustainable approach to narrowing the summer maize yield gap experienced by smallholders in the North China Plain," Agricultural Systems, Elsevier, vol. 204(C).
    10. Liu, Lin & Yao, Shan & Zhang, Hongtao & Muhammed, Ayaz & Xu, Jiaxing & Li, Ruonan & Zhang, Dongjie & Zhang, Shulan & Yang, Xueyun, 2019. "Soil nitrate nitrogen buffer capacity and environmentally safe nitrogen rate for winter wheat-summer maize cropping in Northern China," Agricultural Water Management, Elsevier, vol. 213(C), pages 445-453.
    11. Li, Jianzheng & Wang, Enli & Wang, Yingchun & Xing, Hongtao & Wang, Daolong & Wang, Ligang & Gao, Chunyu, 2016. "Reducing greenhouse gas emissions from a wheat–maize rotation system while still maintaining productivity," Agricultural Systems, Elsevier, vol. 145(C), pages 90-98.
    12. Wang, Hongzhang & Ren, Hao & Han, Kun & Li, Geng & Zhang, Lihua & Zhao, Yali & Liu, Yuee & He, Qijin & Zhang, Jiwang & Zhao, Bin & Ren, Baizhao & Liu, Peng, 2023. "Improving the net energy and energy utilization efficiency of maize production systems in the North China Plain," Energy, Elsevier, vol. 274(C).
    13. Penghui Wang & Rui Ding & Wenjiao Shi & Jun Li, 2024. "Potential Reductions in the Environmental Impacts of Agricultural Production in Hubei Province, China," Agriculture, MDPI, vol. 14(3), pages 1-17, March.
    14. Liang Chi & Shuqing Han & Meili Huan & Yajuan Li & Jifang Liu, 2022. "Land Fragmentation, Technology Adoption and Chemical Fertilizer Application: Evidence from China," IJERPH, MDPI, vol. 19(13), pages 1-17, July.
    15. Yingjun She & Ping Li & Xuebin Qi & Wei Guo & Shafeeq Ur Rahman & Hongfei Lu & Cancan Ma & Zhenjie Du & Jiaxin Cui & Zhijie Liang, 2022. "Effects of Shallow Groundwater Depth and Nitrogen Application Level on Soil Water and Nitrate Content, Growth and Yield of Winter Wheat," Agriculture, MDPI, vol. 12(2), pages 1-19, February.
    16. Zhao, Zhanqing & Qin, Wei & Bai, Zhaohai & Ma, Lin, 2019. "Agricultural nitrogen and phosphorus emissions to water and their mitigation options in the Haihe Basin, China," Agricultural Water Management, Elsevier, vol. 212(C), pages 262-272.
    17. Yan, Nana & Wu, Bingfang & Perry, Chris & Zeng, Hongwei, 2015. "Assessing potential water savings in agriculture on the Hai Basin plain, China," Agricultural Water Management, Elsevier, vol. 154(C), pages 11-19.
    18. Yu, Yanan & He, Yong & Zhao, Xuan, 2021. "Impact of demand information sharing on organic farming adoption: An evolutionary game approach," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    19. Chen, Qi & Qu, Zhaoming & Ma, Guohua & Wang, Wenjing & Dai, Jiaying & Zhang, Min & Wei, Zhanbo & Liu, Zhiguang, 2022. "Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions," Agricultural Water Management, Elsevier, vol. 263(C).
    20. Ahmed, Moiz Uddin & Hussain, Iqbal, 2022. "Prediction of Wheat Production Using Machine Learning Algorithms in northern areas of Pakistan," Telecommunications Policy, Elsevier, vol. 46(6).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:212:y:2019:i:c:p:407-415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.