IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v291y2024ics0378377423004948.html
   My bibliography  Save this article

Optimized fertilization based on fallow season precipitation and the Nutrient Expert system for dryland wheat reduced environmental risks and increased economic benefits

Author

Listed:
  • Yang, Wenjie
  • Li, Yanhang
  • Jia, Bingli
  • Liu, Lei
  • Yuan, Aijing
  • Liu, Jinshan
  • Qiu, Weihong

Abstract

In drylands, optimized management of fertilization based on precipitation is very important to reduce fertilizer inputs and environmental risks and improve crop yield and benefits. Based on a four-year winter wheat experiment with two treatments (FP, farmers’ practices; NE, Nutrient Expert system recommendation) at nine counties of the Chinese Loess Plateau, we determined the effects of NE on wheat yield, environmental risks, and economic benefits under three precipitation year types (dry, normal, and wet) and recommended optimized N fertilization. The results showed that the NE treatment reduced N and P fertilizer input rates by 21.7% and 50.0%, respectively, Nr losses by 30.1% and GHG emissions by 21.6%, but it did not affect wheat grain yield compared to the FP treatment. There were no significant differences in N and P input rates among the three precipitation year types, but higher grain yield and partial factor productivity of N and P fertilizers were found in wet years in the NE treatment. Additionally, soil nitrate N residues in the 0–100 cm soil layers were ordered in wet years < normal years < dry years. Based on the NE system, the optimized N fertilization method could further reduce the N fertilizer rate by 16.6% and 62.5%, Nr losses by 20% and 68%, and GHG emissions by 1.7% and 47.8% in normal and dry years, respectively, but could increase economic benefits by 3.3% and 5.6%, suggesting that optimized fertilization based on fallow season precipitation can result in multiple benefits for agriculture and the environment.

Suggested Citation

  • Yang, Wenjie & Li, Yanhang & Jia, Bingli & Liu, Lei & Yuan, Aijing & Liu, Jinshan & Qiu, Weihong, 2024. "Optimized fertilization based on fallow season precipitation and the Nutrient Expert system for dryland wheat reduced environmental risks and increased economic benefits," Agricultural Water Management, Elsevier, vol. 291(C).
  • Handle: RePEc:eee:agiwat:v:291:y:2024:i:c:s0378377423004948
    DOI: 10.1016/j.agwat.2023.108629
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423004948
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108629?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:291:y:2024:i:c:s0378377423004948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.