IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i10p1863-d949001.html
   My bibliography  Save this article

Centennial Change and Source–Sink Interaction Process of Traditional Agricultural Landscape: Case from Xin’an Traditional Cherry Cultivation System (1920–2020)

Author

Listed:
  • Maolin Li

    (Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization Jointly Built by Henan Province and Ministry of Education, Henan University, Kaifeng 475001, China
    Laboratory of the Yellow River Cultural Heritage, Henan University, Kaifeng 475001, China
    Rural Vitalization Research Institute, Dabieshan Executive Leadership Academy, Xinyang 465550, China)

  • Yongxun Zhang

    (Institute of Agricultural Economics and Development, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • Changhong Miao

    (Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization Jointly Built by Henan Province and Ministry of Education, Henan University, Kaifeng 475001, China
    Laboratory of the Yellow River Cultural Heritage, Henan University, Kaifeng 475001, China)

  • Lulu He

    (College of Humanities and Development Studies, China Agricultural University, Beijing 100094, China)

  • Jiatao Chen

    (Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization Jointly Built by Henan Province and Ministry of Education, Henan University, Kaifeng 475001, China)

Abstract

In contrast to modern agriculture, long-standing traditional agricultural practices such as agricultural heritage systems (AHS) are important inspirations for promoting harmonious human–land relations. However, some AHS have been in danger as their traditional agricultural landscapes (TALs) were changed by rapid modernization and urbanization. Thus, how do we figure out the change processes? What conservation measures can be taken? Taking the Xin’an Traditional Cherry Cultivation System in the loess hilly areas of Henan Province as a case, this study introduced the source–sink landscape theory to analyze the structure and process of the TAL during 1920–2020. Results show that, during 1920–1950, the traditional rural landscape (TRL) and the agricultural (natural) ecological landscape (ANEL) in the TAL were relatively balanced because they were source and sink to each other. Since 1985, the source expansion and sink resistance of both TRL and ANEL have been greatly hindered by the sink growth of modern village landscapes (MVL). As the core source landscape, TRL needs salvage protection for inheriting local characteristics by effective measures. TAL conservation should highlight rurality preservation through expanding the protection scope of TRL, endowing the MVL with more indigenous cultural features, etc. All these may contribute to rural vitalization and sustainable development.

Suggested Citation

  • Maolin Li & Yongxun Zhang & Changhong Miao & Lulu He & Jiatao Chen, 2022. "Centennial Change and Source–Sink Interaction Process of Traditional Agricultural Landscape: Case from Xin’an Traditional Cherry Cultivation System (1920–2020)," Land, MDPI, vol. 11(10), pages 1-22, October.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:10:p:1863-:d:949001
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/10/1863/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/10/1863/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhenling Cui & Hongyan Zhang & Xinping Chen & Chaochun Zhang & Wenqi Ma & Chengdong Huang & Weifeng Zhang & Guohua Mi & Yuxin Miao & Xiaolin Li & Qiang Gao & Jianchang Yang & Zhaohui Wang & Youliang Y, 2018. "Pursuing sustainable productivity with millions of smallholder farmers," Nature, Nature, vol. 555(7696), pages 363-366, March.
    2. Qiushan Li & Kabilijiang Wumaier & Mikiko Ishikawa, 2019. "The Spatial Analysis and Sustainability of Rural Cultural Landscapes: Linpan Settlements in China’s Chengdu Plain," Sustainability, MDPI, vol. 11(16), pages 1-20, August.
    3. Weifeng Zhang & Guoxin Cao & Xiaolin Li & Hongyan Zhang & Chong Wang & Quanqing Liu & Xinping Chen & Zhenling Cui & Jianbo Shen & Rongfeng Jiang & Guohua Mi & Yuxin Miao & Fusuo Zhang & Zhengxia Dou, 2016. "Closing yield gaps in China by empowering smallholder farmers," Nature, Nature, vol. 537(7622), pages 671-674, September.
    4. Jana Špulerová & František Petrovič & Peter Mederly & Matej Mojses & Zita Izakovičová, 2018. "Contribution of Traditional Farming to Ecosystem Services Provision: Case Studies from Slovakia," Land, MDPI, vol. 7(2), pages 1-24, June.
    5. Christopher H. Trisos & Cory Merow & Alex L. Pigot, 2020. "The projected timing of abrupt ecological disruption from climate change," Nature, Nature, vol. 580(7804), pages 496-501, April.
    6. Youyong Zhu & Hairu Chen & Jinghua Fan & Yunyue Wang & Yan Li & Jianbing Chen & JinXiang Fan & Shisheng Yang & Lingping Hu & Hei Leung & Tom W. Mew & Paul S. Teng & Zonghua Wang & Christopher C. Mundt, 2000. "Genetic diversity and disease control in rice," Nature, Nature, vol. 406(6797), pages 718-722, August.
    7. Fusuo Zhang & Xinping Chen & Peter Vitousek, 2013. "An experiment for the world," Nature, Nature, vol. 497(7447), pages 33-35, May.
    8. Lulu He & Qingwen Min & Chuanchun Hong & Yongxun Zhang, 2021. "Features and Socio-Economic Sustainability of Traditional Chestnut Forestry Landscape in China: A Case of Kuancheng County, Hebei Province," Land, MDPI, vol. 10(9), pages 1-18, September.
    9. Patricio Sarmiento-Mateos & Cecilia Arnaiz-Schmitz & Cristina Herrero-Jáuregui & Francisco D. Pineda & María F. Schmitz, 2019. "Designing Protected Areas for Social–Ecological Sustainability: Effectiveness of Management Guidelines for Preserving Cultural Landscapes," Sustainability, MDPI, vol. 11(10), pages 1-20, May.
    10. Zhang, Yongxun & He, Lulu & Li, Xiande & Zhang, Canqiang & Qian, Chen & Li, Jingdong & Zhang, Aiping, 2019. "Why are the Longji Terraces in Southwest China maintained well? A conservation mechanism for agricultural landscapes based on agricultural multi-functions developed by multi-stakeholders," Land Use Policy, Elsevier, vol. 85(C), pages 42-51.
    11. David Tilman & Michael Clark & David R. Williams & Kaitlin Kimmel & Stephen Polasky & Craig Packer, 2017. "Future threats to biodiversity and pathways to their prevention," Nature, Nature, vol. 546(7656), pages 73-81, June.
    12. Tim Newbold & Lawrence N. Hudson & Samantha L. L. Hill & Sara Contu & Igor Lysenko & Rebecca A. Senior & Luca Börger & Dominic J. Bennett & Argyrios Choimes & Ben Collen & Julie Day & Adriana De Palma, 2015. "Global effects of land use on local terrestrial biodiversity," Nature, Nature, vol. 520(7545), pages 45-50, April.
    13. Christopher P. Dunn, 2008. "Biocultural diversity should be a priority for conservation," Nature, Nature, vol. 456(7220), pages 315-315, November.
    14. Verena Seufert & Navin Ramankutty & Jonathan A. Foley, 2012. "Comparing the yields of organic and conventional agriculture," Nature, Nature, vol. 485(7397), pages 229-232, May.
    15. Shilong Piao & Philippe Ciais & Yao Huang & Zehao Shen & Shushi Peng & Junsheng Li & Liping Zhou & Hongyan Liu & Yuecun Ma & Yihui Ding & Pierre Friedlingstein & Chunzhen Liu & Kun Tan & Yongqiang Yu , 2010. "The impacts of climate change on water resources and agriculture in China," Nature, Nature, vol. 467(7311), pages 43-51, September.
    16. Wenjun Jiao & Qingwen Min, 2017. "Reviewing the Progress in the Identification, Conservation and Management of China-Nationally Important Agricultural Heritage Systems (China-NIAHS)," Sustainability, MDPI, vol. 9(10), pages 1-14, September.
    17. Paola Gullino & Maria Gabriella Mellano & Gabriele Loris Beccaro & Marco Devecchi & Federica Larcher, 2020. "Strategies for the Management of Traditional Chestnut Landscapes in Pesio Valley, Italy: A Participatory Approach," Land, MDPI, vol. 9(12), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maolin Li & Yongxun Zhang & Ming Xu & Lulu He & Longteng Liu & Qisheng Tang, 2019. "China Eco-Wisdom: A Review of Sustainability of Agricultural Heritage Systems on Aquatic-Ecological Conservation," Sustainability, MDPI, vol. 12(1), pages 1-18, December.
    2. Daijun Liu & Philipp Semenchuk & Franz Essl & Bernd Lenzner & Dietmar Moser & Tim M. Blackburn & Phillip Cassey & Dino Biancolini & César Capinha & Wayne Dawson & Ellie E. Dyer & Benoit Guénard & Evan, 2023. "The impact of land use on non-native species incidence and number in local assemblages worldwide," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    4. Ziqi Meng & Jinwei Dong & Erle C. Ellis & Graciela Metternicht & Yuanwei Qin & Xiao-Peng Song & Sara Löfqvist & Rachael D. Garrett & Xiaopeng Jia & Xiangming Xiao, 2023. "Post-2020 biodiversity framework challenged by cropland expansion in protected areas," Nature Sustainability, Nature, vol. 6(7), pages 758-768, July.
    5. Zhang, Bangbang & Li, Xian & Chen, Haibin & Niu, Wenhao & Kong, Xiangbin & Yu, Qiang & Zhao, Minjuan & Xia, Xianli, 2022. "Identifying opportunities to close yield gaps in China by use of certificated cultivars to estimate potential productivity," Land Use Policy, Elsevier, vol. 117(C).
    6. Xiaolin Yang & Jinran Xiong & Taisheng Du & Xiaotang Ju & Yantai Gan & Sien Li & Longlong Xia & Yanjun Shen & Steven Pacenka & Tammo S. Steenhuis & Kadambot H. M. Siddique & Shaozhong Kang & Klaus But, 2024. "Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Zhuang, Minghao & Liu, Yize & Yang, Yi & Zhang, Qingsong & Ying, Hao & Yin, Yulong & Cui, Zhenling, 2022. "The sustainability of staple crops in China can be substantially improved through localized strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    8. Guo, Xiao-Xia & Li, Ke-Li & Liu, Yi-Ze & Zhuang, Ming-Hao & Wang, Chong, 2022. "Toward the economic-environmental sustainability of smallholder farming systems through judicious management strategies and optimized planting structures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    9. Wang, Linlin & Li, Lingling & Xie, Junhong & Luo, Zhuzhu & Sumera, Anwar & Zechariah, Effah & Fudjoe, Setor Kwami & Palta, Jairo A. & Chen, Yinglong, 2022. "Does plastic mulching reduce water footprint in field crops in China? A meta-analysis," Agricultural Water Management, Elsevier, vol. 260(C).
    10. Wei, Zhibiao & Zhuang, Minghao & Hellegers, Petra & Cui, Zhenling & Hoffland, Ellis, 2023. "Towards circular nitrogen use in the agri-food system at village and county level in China," Agricultural Systems, Elsevier, vol. 209(C).
    11. Marion Desquilbet & Bruno Dorin & Denis Couvet, 2016. "Land Sharing vs Land Sparing to Conserve Biodiversity: How Agricultural Markets Make the Difference [land-sharing/land-sparing, comment les marchés font la différence]," Post-Print hal-03948463, HAL.
    12. Zhang, Feng & Zhang, Wenjuan & Li, Ming & Zhang, Yuan & Li, Fengmin & Li, Changbin, 2017. "Is crop biomass and soil carbon storage sustainable with long-term application of full plastic film mulching under future climate change?," Agricultural Systems, Elsevier, vol. 150(C), pages 67-77.
    13. Bo Sun & Yongming Luo & Dianlin Yang & Jingsong Yang & Yuguo Zhao & Jiabao Zhang, 2023. "Coordinative Management of Soil Resources and Agricultural Farmland Environment for Food Security and Sustainable Development in China," IJERPH, MDPI, vol. 20(4), pages 1-16, February.
    14. Mollie Chapman & Susanna Klassen & Maayan Kreitzman & Adrian Semmelink & Kelly Sharp & Gerald Singh & Kai M. A. Chan, 2017. "5 Key Challenges and Solutions for Governing Complex Adaptive (Food) Systems," Sustainability, MDPI, vol. 9(9), pages 1-30, September.
    15. Renata Kędzior & Agnieszka Kosewska, 2022. "Landscape Heterogeneity Determines the Diversity and Life History Traits of Ground Beetles (Coleoptera: Carabidae)," Sustainability, MDPI, vol. 14(21), pages 1-13, October.
    16. Yubo Liao & Bangbang Zhang & Xiangbin Kong & Liangyou Wen & Dongheng Yao & Yuxuan Dang & Wenguang Chen, 2022. "A Cooperative-Dominated Model of Conservation Tillage to Mitigate Soil Degradation on Cultivated Land and Its Effectiveness Evaluation," Land, MDPI, vol. 11(8), pages 1-19, August.
    17. Shilei Cui & Yajuan Li & Xiaoqiang Jiao & Dong Zhang, 2022. "Hierarchical Linkage between the Basic Characteristics of Smallholders and Technology Awareness Determines Small-Holders’ Willingness to Adopt Green Production Technology," Agriculture, MDPI, vol. 12(8), pages 1-17, August.
    18. Liang, Zhengyuan & van der Werf, Wopke & Xu, Zhan & Cheng, Jiali & Wang, Chong & Cong, Wen-Feng & Zhang, Chaochun & Zhang, Fusuo & Groot, Jeroen C.J., 2022. "Identifying exemplary sustainable cropping systems using a positive deviance approach: Wheat-maize double cropping in the North China Plain," Agricultural Systems, Elsevier, vol. 201(C).
    19. Qingwen Min & Bitian Zhang, 2019. "Research Progress in the Conservation and Development of China-Nationally Important Agricultural Heritage Systems (China-NIAHS)," Sustainability, MDPI, vol. 12(1), pages 1-15, December.
    20. Yamaura, Yuichi & Yamada, Yusuke & Matsuura, Toshiya & Tamai, Koji & Taki, Hisatomo & Sato, Tamotsu & Hashimoto, Shoji & Murakami, Wataru & Toda, Kenichiro & Saito, Hitoshi & Nanko, Kazuki & Ito, Erik, 2021. "Modeling impacts of broad-scale plantation forestry on ecosystem services in the past 60Â years and for the future," Ecosystem Services, Elsevier, vol. 49(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:10:p:1863-:d:949001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.