IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v13y2023i4d10.1038_s41558-022-01592-2.html
   My bibliography  Save this article

Why residual emissions matter right now

Author

Listed:
  • Holly Jean Buck

    (University at Buffalo)

  • Wim Carton

    (Lund University)

  • Jens Friis Lund

    (University of Copenhagen)

  • Nils Markusson

    (Lancaster University)

Abstract

Net-zero targets imply that continuing residual emissions will be balanced by carbon dioxide removal. However, residual emissions are typically not well defined, conceptually or quantitatively. We analysed governments’ long-term strategies submitted to the UNFCCC to explore projections of residual emissions, including amounts and sectors. We found substantial levels of residual emissions at net-zero greenhouse gas emissions, on average 18% of current emissions for Annex I countries. The majority of strategies were imprecise about which sectors residual emissions would originate from, and few offered specific projections of how residual emissions could be balanced by carbon removal. Our findings indicate the need for a consistent definition of residual emissions, as well as processes that standardize and compare expectations about residual emissions across countries. This is necessary for two reasons: to avoid projections of excessive residuals and correspondent unsustainable or unfeasible carbon-removal levels and to send clearer signals about the temporality of fossil fuel use.

Suggested Citation

  • Holly Jean Buck & Wim Carton & Jens Friis Lund & Nils Markusson, 2023. "Why residual emissions matter right now," Nature Climate Change, Nature, vol. 13(4), pages 351-358, April.
  • Handle: RePEc:nat:natcli:v:13:y:2023:i:4:d:10.1038_s41558-022-01592-2
    DOI: 10.1038/s41558-022-01592-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-022-01592-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-022-01592-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kate Dooley & Sivan Kartha, 2018. "Land-based negative emissions: risks for climate mitigation and impacts on sustainable development," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 18(1), pages 79-98, February.
    2. Matthew Brander & Francisco Ascui & Vivian Scott & Simon Tett, 2021. "Carbon accounting for negative emissions technologies," Climate Policy, Taylor & Francis Journals, vol. 21(5), pages 699-717, May.
    3. Thomas Hale & Stephen M. Smith & Richard Black & Kate Cullen & Byron Fay & John Lang & Saba Mahmood, 2022. "Assessing the rapidly-emerging landscape of net zero targets," Climate Policy, Taylor & Francis Journals, vol. 22(1), pages 18-29, January.
    4. Giulia Realmonte & Laurent Drouet & Ajay Gambhir & James Glynn & Adam Hawkes & Alexandre C. Köberle & Massimo Tavoni, 2019. "An inter-model assessment of the role of direct air capture in deep mitigation pathways," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    5. Henri Waisman & Christine Bataille & Harald Winkler & Frank Jotzo & Priyadarshi Shukla & Michel Colombier & Daniel Buira & Patrick Criqui & Manfred Fischedick & Mikiko Kainuma & Emilio La Rovere & Ste, 2019. "A pathway design framework for national low greenhouse gas emission development strategies," Post-Print hal-02079339, HAL.
    6. Dan Welsby & James Price & Steve Pye & Paul Ekins, 2021. "Unextractable fossil fuels in a 1.5 °C world," Nature, Nature, vol. 597(7875), pages 230-234, September.
    7. Gunnar Luderer & Zoi Vrontisi & Christoph Bertram & Oreane Y. Edelenbosch & Robert C. Pietzcker & Joeri Rogelj & Harmen Sytze Boer & Laurent Drouet & Johannes Emmerling & Oliver Fricko & Shinichiro Fu, 2018. "Residual fossil CO2 emissions in 1.5–2 °C pathways," Nature Climate Change, Nature, vol. 8(7), pages 626-633, July.
    8. Henri Waisman & Chris Bataille & Harald Winkler & Frank Jotzo & Priyadarshi Shukla & Michel Colombier & Daniel Buira & Patrick Criqui & Manfred Fischedick & Mikiko Kainuma & Emilio Rovere & Steve Pye , 2019. "A pathway design framework for national low greenhouse gas emission development strategies," Nature Climate Change, Nature, vol. 9(4), pages 261-268, April.
    9. M.J. Mace & Claire L. Fyson & Michiel Schaeffer & William L. Hare, 2021. "Large‐Scale Carbon Dioxide Removal to Meet the 1.5°C Limit: Key Governance Gaps, Challenges and Priority Responses," Global Policy, London School of Economics and Political Science, vol. 12(S1), pages 67-81, April.
    10. Sam Fankhauser & Stephen M. Smith & Myles Allen & Kaya Axelsson & Thomas Hale & Cameron Hepburn & J. Michael Kendall & Radhika Khosla & Javier Lezaun & Eli Mitchell-Larson & Michael Obersteiner & Lava, 2022. "The meaning of net zero and how to get it right," Nature Climate Change, Nature, vol. 12(1), pages 15-21, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fridahl, Mathias & Schenuit, Felix & Lundberg, Liv & Möllersten, Kenneth & Böttcher, Miranda & Rickels, Wilfried & Hansson, Anders, 2023. "Novel carbon dioxide removals techniques must be integrated into the European Union’s climate policies," Open Access Publications from Kiel Institute for the World Economy 281982, Kiel Institute for the World Economy (IfW Kiel).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jason Hickel & Stéphane Hallegatte, 2022. "Can we live within environmental limits and still reduce poverty? Degrowth or decoupling?," Development Policy Review, Overseas Development Institute, vol. 40(1), January.
    2. Christopher G. F. Bataille, 2020. "Physical and policy pathways to net‐zero emissions industry," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    3. Le Treut, Gaëlle & Lefèvre, Julien & Lallana, Francisco & Bravo, Gonzalo, 2021. "The multi-level economic impacts of deep decarbonization strategies for the energy system," Energy Policy, Elsevier, vol. 156(C).
    4. Oshiro, Ken & Fujimori, Shinichiro, 2022. "Role of hydrogen-based energy carriers as an alternative option to reduce residual emissions associated with mid-century decarbonization goals," Applied Energy, Elsevier, vol. 313(C).
    5. Galán-Martín, Ángel & Contreras, María del Mar & Romero, Inmaculada & Ruiz, Encarnación & Bueno-Rodríguez, Salvador & Eliche-Quesada, Dolores & Castro-Galiano, Eulogio, 2022. "The potential role of olive groves to deliver carbon dioxide removal in a carbon-neutral Europe: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    6. Sandra Kiessling & Hamidreza Gohari Darabkhani & Abdel-Hamid Soliman, 2022. "The Bio Steel Cycle: 7 Steps to Net-Zero CO 2 Emissions Steel Production," Energies, MDPI, vol. 15(23), pages 1-22, November.
    7. Günther, Philipp & Ekardt, Felix, 2022. "Human Rights and Large-Scale Carbon Dioxide Removal: Potential Limits to BECCS and DACCS Deployment," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11(12), pages 1-29.
    8. Andreas Fazekas & Christopher Bataille & Adrien Vogt-Schilb, 2022. "Achieving net-zero prosperity: how governments can unlock 15 essential transformations," Post-Print halshs-03742125, HAL.
    9. Motlaghzadeh, Kasra & Schweizer, Vanessa & Craik, Neil & Moreno-Cruz, Juan, 2023. "Key uncertainties behind global projections of direct air capture deployment," Applied Energy, Elsevier, vol. 348(C).
    10. Sindhwani, Rahul & Singh, Punj Lata & Behl, Abhishek & Afridi, Mohd. Shayan & Sammanit, Debaroti & Tiwari, Aviral Kumar, 2022. "Modeling the critical success factors of implementing net zero emission (NZE) and promoting resilience and social value creation," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    11. Comello, Stephen & Reichelstein, Julia & Reichelstein, Stefan, 2023. "Corporate carbon reporting: Improving transparency and accountability," ZEW Discussion Papers 23-026, ZEW - Leibniz Centre for European Economic Research.
    12. Shu, David Yang & Deutz, Sarah & Winter, Benedikt Alexander & Baumgärtner, Nils & Leenders, Ludger & Bardow, André, 2023. "The role of carbon capture and storage to achieve net-zero energy systems: Trade-offs between economics and the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    13. Govindan, Kannan, 2023. "How digitalization transforms the traditional circular economy to a smart circular economy for achieving SDGs and net zero," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    14. Gupta, Dipti & Dhar, Subash, 2022. "Exploring the freight transportation transitions for mitigation and development pathways of India," Transport Policy, Elsevier, vol. 129(C), pages 156-175.
    15. Keiner, Dominik & Gulagi, Ashish & Breyer, Christian, 2023. "Energy demand estimation using a pre-processing macro-economic modelling tool for 21st century transition analyses," Energy, Elsevier, vol. 272(C).
    16. Philipp Günther & Felix Ekardt, 2022. "Human Rights and Large-Scale Carbon Dioxide Removal: Potential Limits to BECCS and DACCS Deployment," Land, MDPI, vol. 11(12), pages 1-29, November.
    17. Florian Leblanc & Ruben Bibas & Silvana Mima & Matteo Muratori & Shogo Sakamoto & Fuminori Sano & Nico Bauer & Vassilis Daioglou & Shinichiro Fujimori & Matthew J. Gidden & Estsushi Kato & Steven K. R, 2022. "The contribution of bioenergy to the decarbonization of transport: a multi-model assessment," Climatic Change, Springer, vol. 170(3), pages 1-21, February.
    18. McGookin, Connor & Ó Gallachóir, Brian & Byrne, Edmond, 2021. "Participatory methods in energy system modelling and planning – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    19. Felder, F.A. & Kumar, P., 2021. "A review of existing deep decarbonization models and their potential in policymaking," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    20. Francisco Lallana & Gonzalo Bravo & Gaëlle Le Treut & Julien Lefevre & Gustavo Nadal & Nicolás Di Sbroiavacca, 2021. "Exploring deep decarbonization pathways for Argentina," Post-Print hal-03663087, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:13:y:2023:i:4:d:10.1038_s41558-022-01592-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.