IDEAS home Printed from https://ideas.repec.org/a/mfj/journl/v6y2002i2p99-130.html
   My bibliography  Save this article

A Decomposition of Empirical Distributions with Applications to the Valuation of Derivative Assets

Author

Listed:
  • Mondher Bellalah

    (Universite de Cergy-Pontoise, France)

  • Marc Lavielle

    (Univsite Paris-Sud, France)

Abstract

The selection of an appropriate parameterization of data is a fundamental step in a majority of empirical research effort. Likewise, detecting or estimating features of non-stationarities in data sequences is a critical point in conducting credible research that uses data for inference. In this spirit, this paper presents a simple decomposition of the empirical return distributions of financial assets into the sum of various normal distributions. The decomposition is motivated by the fact that market participants expect distributions to be drawn from two or three possible scenarios. It is also motivated by the recent applications of the EM algorithm to financial data. A parametric and a nonparametric approach are proposed and applied to the empirical distribution of the CAC 40 index traded in the Paris Bourse. We estimate the parameters of the mixture and propose a decomposition into three Gaussian distributions which essentially differ by their variances. The decomposition fits the observed distribution. An alternative approach, which consists in detecting these changes and estimating the distribution of the returns between two changes is developed. The results are obtained using a segmentation method, which is applied to financial data. One of the main findings in this paper is that the two approaches show the same results and give support to the proposed decomposition. There exists three kinds of regimes in the Paris Bourse and the series of the returns jump from a regime to another one at some random instants. This work might be applied to other data sets or other data generating conditions. It can used for the valuation of standard and exotic derivatives.

Suggested Citation

  • Mondher Bellalah & Marc Lavielle, 2002. "A Decomposition of Empirical Distributions with Applications to the Valuation of Derivative Assets," Multinational Finance Journal, Multinational Finance Journal, vol. 6(2), pages 99-130, June.
  • Handle: RePEc:mfj:journl:v:6:y:2002:i:2:p:99-130
    as

    Download full text from publisher

    File URL: http://www.mfsociety.org/modules/modDashboard/uploadFiles/journals/MJ~695~p16taljfuuu3413n3li10tr17401.pdf
    Download Restriction: no

    File URL: http://www.mfsociety.org/modules/modDashboard/uploadFiles/journals/googleScholar/716.html
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kon, Stanley J, 1984. "Models of Stock Returns-A Comparison," Journal of Finance, American Finance Association, vol. 39(1), pages 147-165, March.
    2. Mondher Bellalah, 1999. "Valuation of futures and commodity options with information costs," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 19(6), pages 645-664, September.
    3. Blattberg, Robert C & Gonedes, Nicholas J, 1974. "A Comparison of the Stable and Student Distributions as Statistical Models for Stock Prices," The Journal of Business, University of Chicago Press, vol. 47(2), pages 244-280, April.
    4. Demos, Antonis & Sentana, Enrique, 1998. "An EM Algorithm for Conditionally Heteroscedastic Factor Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 357-361, July.
    5. Bookstaber, Richard M & McDonald, James B, 1987. "A General Distribution for Describing Security Price Returns," The Journal of Business, University of Chicago Press, vol. 60(3), pages 401-424, July.
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. Enrique Sentana, 1998. "The relation between conditionally heteroskedastic factor models and factor GARCH models," Econometrics Journal, Royal Economic Society, vol. 1(RegularPa), pages 1-9.
    8. Lavielle, Marc, 1999. "Detection of multiple changes in a sequence of dependent variables," Stochastic Processes and their Applications, Elsevier, vol. 83(1), pages 79-102, September.
    9. Melick, William R. & Thomas, Charles P., 1997. "Recovering an Asset's Implied PDF from Option Prices: An Application to Crude Oil during the Gulf Crisis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 32(1), pages 91-115, March.
    10. Eugene F. Fama, 1963. "Mandelbrot and the Stable Paretian Hypothesis," The Journal of Business, University of Chicago Press, vol. 36, pages 420-420.
    11. K. E. Basford & G. J. McLachlan, 1985. "Likelihood Estimation with Normal Mixture Models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 34(3), pages 282-289, November.
    12. Robert J. Ritchey, 1990. "Call Option Valuation For Discrete Normal Mixtures," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 13(4), pages 285-296, December.
    13. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    14. Ait-Sahalia, Yacine, 1996. "Testing Continuous-Time Models of the Spot Interest Rate," The Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 385-426.
    15. Yacine Aït-Sahalia & Andrew W. Lo, "undated". "Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices," CRSP working papers 332, Center for Research in Security Prices, Graduate School of Business, University of Chicago.
    16. Press, S. J., 1972. "Multivariate stable distributions," Journal of Multivariate Analysis, Elsevier, vol. 2(4), pages 444-462, December.
    17. Epps, Thomas W & Epps, Mary Lee, 1976. "The Stochastic Dependence of Security Price Changes and Transaction Volumes: Implications for the Mixture-of-Distributions Hypothesis," Econometrica, Econometric Society, vol. 44(2), pages 305-321, March.
    18. Dimson, Elroy & Marsh, Paul, 1995. "Capital Requirements for Securities Firms," Journal of Finance, American Finance Association, vol. 50(3), pages 821-851, July.
    19. Ritchey, Robert J, 1990. "Call Option Valuation for Discrete Normal Mixtures," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 13(4), pages 285-296, Winter.
    20. Das, Sanjiv Ranjan & Sundaram, Rangarajan K., 1999. "Of Smiles and Smirks: A Term Structure Perspective," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(2), pages 211-239, June.
    21. Longin, Francois M, 1996. "The Asymptotic Distribution of Extreme Stock Market Returns," The Journal of Business, University of Chicago Press, vol. 69(3), pages 383-408, July.
    22. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    23. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    24. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rania Hentati & Jean-Luc Prigent, 2011. "Portfolio Optimization Within Mixture Of Distributions," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00607105, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    2. En-Der Su & Feng-Jeng Lin, 2012. "Two-State Volatility Transition Pricing and Hedging of TXO Options," Computational Economics, Springer;Society for Computational Economics, vol. 39(3), pages 259-287, March.
    3. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    4. Phoebe Koundouri & Nikolaos Kourogenis & Nikitas Pittis, 2016. "Statistical Modeling Of Stock Returns: Explanatory Or Descriptive? A Historical Survey With Some Methodological Reflections," Journal of Economic Surveys, Wiley Blackwell, vol. 30(1), pages 149-164, February.
    5. Jean -Luc Prigent & Olivier Renault & Olivier Scaillet, 1999. "An Autoregressive Conditional Binomial Option Pricing Model," Working Papers 99-65, Center for Research in Economics and Statistics.
    6. Eom, Cheoljun & Kaizoji, Taisei & Scalas, Enrico, 2019. "Fat tails in financial return distributions revisited: Evidence from the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    7. Su, EnDer & Wen Wong, Kai, 2019. "Testing the alternative two-state options pricing models: An empirical analysis on TXO," The Quarterly Review of Economics and Finance, Elsevier, vol. 72(C), pages 101-116.
    8. David Edelman & Thomas Gillespie, 2000. "The Stochastically Subordinated Poisson Normal Process for Modelling Financial Assets," Annals of Operations Research, Springer, vol. 100(1), pages 133-164, December.
    9. Carol Alexander & Sujit Narayanan, 2001. "Option Pricing with Normal Mixture Returns: Modelling Excess Kurtosis and Uncertanity in Volatility," ICMA Centre Discussion Papers in Finance icma-dp2001-10, Henley Business School, University of Reading, revised Dec 2001.
    10. Maria Kyriacou & Jose Olmo & Marius Strittmatter, 2021. "Optimal portfolio allocation using option‐implied information," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(2), pages 266-285, February.
    11. Chuang, Wen-I & Huang, Teng-Ching & Lin, Bing-Huei, 2013. "Predicting volatility using the Markov-switching multifractal model: Evidence from S&P 100 index and equity options," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 168-187.
    12. Alexander, Carol, 2004. "Normal mixture diffusion with uncertain volatility: Modelling short- and long-term smile effects," Journal of Banking & Finance, Elsevier, vol. 28(12), pages 2957-2980, December.
    13. Kaehler, Jürgen & Marnet, Volker, 1993. "Markov-switching models for exchange-rate dynamics and the pricing of foreign-currency options," ZEW Discussion Papers 93-03, ZEW - Leibniz Centre for European Economic Research.
    14. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    15. Pan, Ming-Shiun & Chan, Kam C. & Fok, Chi-Wing, 1995. "The distribution of currency futures price changes: A two-piece mixture of normals approach," International Review of Economics & Finance, Elsevier, vol. 4(1), pages 69-78.
    16. Gilles Daniel & Nathan Joseph & David Bree, 2005. "Stochastic volatility and the goodness-of-fit of the Heston model," Quantitative Finance, Taylor & Francis Journals, vol. 5(2), pages 199-211.
    17. Yuji Yamada & James Primbs, 2004. "Properties of Multinomial Lattices with Cumulants for Option Pricing and Hedging," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 11(3), pages 335-365, September.
    18. Daouk, Hazem & Guo, Jie Qun, 2003. "Switching Asymmetric GARCH and Options on a Volatility Index," Working Papers 127187, Cornell University, Department of Applied Economics and Management.
    19. Y. Malevergne & V. F. Pisarenko & D. Sornette, 2003. "Empirical Distributions of Log-Returns: between the Stretched Exponential and the Power Law?," Papers physics/0305089, arXiv.org.
    20. Muneer Shaik & S. Maheswaran, 2019. "Robust Volatility Estimation with and Without the Drift Parameter," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(1), pages 57-91, March.

    More about this item

    Keywords

    derivatives; distributions; EM algorithm; mixture;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mfj:journl:v:6:y:2002:i:2:p:99-130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Theodossiou Panayiotis (email available below). General contact details of provider: https://edirc.repec.org/data/mfsssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.