IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v52y2025i2d10.1007_s11116-023-10427-8.html
   My bibliography  Save this article

Dominant charging location choice of commuters and non-commuters: a big data approach

Author

Listed:
  • Xiong Yang

    (The Hong Kong Polytechnic University)

  • Chengxiang Zhuge

    (The Hong Kong Polytechnic University
    The Hong Kong Polytechnic University
    The Hong Kong Polytechnic University Shenzhen Research Institute
    The Hong Kong Polytechnic University)

  • Chunfu Shao

    (Beijing Jiaotong University)

  • Runhang Guo

    (The Hong Kong Polytechnic University)

  • Andrew Tin Chak Wong

    (The Hong Kong Polytechnic University)

  • Xiaoyu Zhang

    (Beijing Jiaotong University)

  • Mingdong Sun

    (Beijing Jiaotong University)

  • Pinxi Wang

    (Beijing Transport Institute)

  • Shiqi Wang

    (The Hong Kong Polytechnic University)

Abstract

This paper is focused on electric vehicle (EV) users’ dominant charging locations, where they get their EVs recharged more frequently. We particularly compared the dominant charging location choice of commuters and non-commuters using a unique one-month trajectory dataset collected from 76,774 actual private EVs in Beijing in January 2018. Specifically, we first grouped EV users for both commuters and non-commuters according to their dominant charging locations and then characterized and compared their charging patterns. Further, we associated the dominant charging location choice of EV users with their characteristics using a mixed logistic regression model. The results suggested that over 50% of the EV users were the Home Dominated users with most charging events occurring around home. Further, there were significant differences in charging patterns of EV users from different groups by dominant charging location, and also between commuters and non-commuters. Commuters tended to have a lower SOC than non-commuters when they got their EVs recharged. Moreover, the dominant charging location choice of EV users was significantly associated with their characteristics, including charging opportunities available and mobility patterns, and the association is different for commuters and non-commuters. The results are expected to be useful for deploying charging infrastructure.

Suggested Citation

  • Xiong Yang & Chengxiang Zhuge & Chunfu Shao & Runhang Guo & Andrew Tin Chak Wong & Xiaoyu Zhang & Mingdong Sun & Pinxi Wang & Shiqi Wang, 2025. "Dominant charging location choice of commuters and non-commuters: a big data approach," Transportation, Springer, vol. 52(2), pages 439-466, April.
  • Handle: RePEc:kap:transp:v:52:y:2025:i:2:d:10.1007_s11116-023-10427-8
    DOI: 10.1007/s11116-023-10427-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-023-10427-8
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-023-10427-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao-Hui Sun & Toshiyuki Yamamoto & Kazuhiro Takahashi & Takayuki Morikawa, 2018. "Home charge timing choice behaviors of plug-in hybrid electric vehicle users under a dynamic electricity pricing scheme," Transportation, Springer, vol. 45(6), pages 1849-1869, November.
    2. Björnsson, Lars-Henrik & Karlsson, Sten, 2015. "Plug-in hybrid electric vehicles: How individual movement patterns affect battery requirements, the potential to replace conventional fuels, and economic viability," Applied Energy, Elsevier, vol. 143(C), pages 336-347.
    3. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    4. Gong, Huiming & Zou, Yuan & Yang, Qingkai & Fan, Jie & Sun, Fengchun & Goehlich, Dietmar, 2018. "Generation of a driving cycle for battery electric vehicles:A case study of Beijing," Energy, Elsevier, vol. 150(C), pages 901-912.
    5. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, Enero.
    6. Hess, Stephane & Polak, John W., 2005. "Mixed logit modelling of airport choice in multi-airport regions," Journal of Air Transport Management, Elsevier, vol. 11(2), pages 59-68.
    7. Wolbertus, Rick & Kroesen, Maarten & van den Hoed, Robert & Chorus, Caspar, 2018. "Fully charged: An empirical study into the factors that influence connection times at EV-charging stations," Energy Policy, Elsevier, vol. 123(C), pages 1-7.
    8. Yang Xu & Shih-Lung Shaw & Ziliang Zhao & Ling Yin & Zhixiang Fang & Qingquan Li, 2015. "Understanding aggregate human mobility patterns using passive mobile phone location data: a home-based approach," Transportation, Springer, vol. 42(4), pages 625-646, July.
    9. Xu, Min & Meng, Qiang & Liu, Kai & Yamamoto, Toshiyuki, 2017. "Joint charging mode and location choice model for battery electric vehicle users," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 68-86.
    10. Bolong Yun & Daniel (Jian) Sun & Yingjie Zhang & Siwen Deng & Jing Xiong, 2019. "A Charging Location Choice Model for Plug-In Hybrid Electric Vehicle Users," Sustainability, MDPI, vol. 11(20), pages 1-23, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fosgerau, Mogens & Bierlaire, Michel, 2007. "A practical test for the choice of mixing distribution in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 784-794, August.
    2. Solvi Hoen, Fredrik & Díez-Gutiérrez, María & Babri, Sahar & Hess, Stephane & Tørset, Trude, 2023. "Charging electric vehicles on long trips and the willingness to pay to reduce waiting for charging. Stated preference survey in Norway," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    3. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    4. Bing Han & Shuang Ren & Jingjing Bao, 2020. "Mixed Logit Model Based on Improved Nonlinear Utility Functions: A Market Shares Solution Method of Different Railway Traffic Modes," Sustainability, MDPI, vol. 12(4), pages 1-25, February.
    5. Cordera, Rubén & Luigi dell’Olio, & Sipone, Silvia & Moura, José Luis, 2024. "Modeling airport choice for a multi-airport area using a random parameter logit model," Research in Transportation Economics, Elsevier, vol. 104(C).
    6. Marcucci, Edoardo & Gatta, Valerio, 2012. "Dissecting preference heterogeneity in consumer stated choices," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 331-339.
    7. Stephane Hess & Denis Bolduc & John Polak, 2010. "Random covariance heterogeneity in discrete choice models," Transportation, Springer, vol. 37(3), pages 391-411, May.
    8. Wolff, Stefanie & Madlener, Reinhard, 2020. "Willing to Pay? Spatial Heterogeneity of e-Vehicle Charging Preferences in Germany," FCN Working Papers 9/2020, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    9. Birolini, Sebastian & Malighetti, Paolo & Redondi, Renato & Deforza, Paolo, 2019. "Access mode choice to low-cost airports: Evaluation of new direct rail services at Milan-Bergamo airport," Transport Policy, Elsevier, vol. 73(C), pages 113-124.
    10. Evangelinos, Christos & Staub, Nelly & Marcucci, Edoardo & Gatta, Valerio, 2021. "The impact of airport parking fees on the tourist's airport/airline choice behavior," Journal of Air Transport Management, Elsevier, vol. 90(C).
    11. Ortega, David L. & Wang, H. Holly & Wu, Laping & Hong, Soo Jeong, 2015. "Retail channel and consumer demand for food quality in China," China Economic Review, Elsevier, vol. 36(C), pages 359-366.
    12. Pereira, Pedro & Ribeiro, Tiago, 2011. "The impact on broadband access to the Internet of the dual ownership of telephone and cable networks," International Journal of Industrial Organization, Elsevier, vol. 29(2), pages 283-293, March.
    13. Choi, Andy S., 2013. "Nonmarket values of major resources in the Korean DMZ areas: A test of distance decay," Ecological Economics, Elsevier, vol. 88(C), pages 97-107.
    14. Doherty, Edel & Campbell, Danny, 2011. "Demand for improved food safety and quality: a cross-regional comparison," 85th Annual Conference, April 18-20, 2011, Warwick University, Coventry, UK 108791, Agricultural Economics Society.
    15. Abdurrahman B. Aydemir & Erkan Duman, 2021. "Migrant Networks and Destination Choice: Evidence from Moves across Turkish Provinces," Koç University-TUSIAD Economic Research Forum Working Papers 2109, Koc University-TUSIAD Economic Research Forum.
    16. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    17. Veneziani, Mario & Sckokai, Paolo & Moro, Daniele, 2012. "Consumers’ willingness to pay for a functional food," 2012 First Congress, June 4-5, 2012, Trento, Italy 124101, Italian Association of Agricultural and Applied Economics (AIEAA).
    18. Kesternich, Iris & Heiss, Florian & McFadden, Daniel & Winter, Joachim, 2013. "Suit the action to the word, the word to the action: Hypothetical choices and real decisions in Medicare Part D," Journal of Health Economics, Elsevier, vol. 32(6), pages 1313-1324.
    19. Jianhua Wang & Jiaye Ge & Yuting Ma, 2018. "Urban Chinese Consumers’ Willingness to Pay for Pork with Certified Labels: A Discrete Choice Experiment," Sustainability, MDPI, vol. 10(3), pages 1-14, February.
    20. Qian, Lixian & Grisolía, Jose M. & Soopramanien, Didier, 2019. "The impact of service and government-policy attributes on consumer preferences for electric vehicles in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 70-84.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:52:y:2025:i:2:d:10.1007_s11116-023-10427-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.