Feasibility of estimating travel demand using geolocations of social media data
Author
Abstract
Suggested Citation
DOI: 10.1007/s11116-021-10171-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Qi Wang & Nolan Edward Phillips & Mario L. Small & Robert J. Sampson, 2018. "Urban mobility and neighborhood isolation in America’s 50 largest cities," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 115(30), pages 7735-7740, July.
- Cuauhtemoc Anda & Alexander Erath & Pieter Jacobus Fourie, 2017. "Transport modelling in the age of big data," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 21(0), pages 19-42, August.
- Hasnat, Md Mehedi & Faghih-Imani, Ahmadreza & Eluru, Naveen & Hasan, Samiul, 2019. "Destination choice modeling using location-based social media data," Journal of choice modelling, Elsevier, vol. 31(C), pages 22-34.
- Marta C. González & César A. Hidalgo & Albert-László Barabási, 2009.
"Understanding individual human mobility patterns,"
Nature, Nature, vol. 458(7235), pages 238-238, March.
- Marta C. González & César A. Hidalgo & Albert-László Barabási, 2008. "Understanding individual human mobility patterns," Nature, Nature, vol. 453(7196), pages 779-782, June.
- Maxime Lenormand & Miguel Picornell & Oliva G Cantú-Ros & Antònia Tugores & Thomas Louail & Ricardo Herranz & Marc Barthelemy & Enrique Frías-Martínez & José J Ramasco, 2014. "Cross-Checking Different Sources of Mobility Information," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-10, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ruochen Ma & Katsunori Furuya, 2024. "Social Media Image and Computer Vision Method Application in Landscape Studies: A Systematic Literature Review," Land, MDPI, vol. 13(2), pages 1-22, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- James Saxon, 2021. "The local structures of human mobility in Chicago," Environment and Planning B, , vol. 48(7), pages 1806-1821, September.
- María Vega-Gonzalo & Panayotis Christidis, 2022. "Fair Models for Impartial Policies: Controlling Algorithmic Bias in Transport Behavioural Modelling," Sustainability, MDPI, vol. 14(14), pages 1-23, July.
- Mattia Mazzoli & Boris Diechtiareff & Antònia Tugores & Willian Wives & Natalia Adler & Pere Colet & José J Ramasco, 2020. "Migrant mobility flows characterized with digital data," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-20, March.
- Robert J Sampson, 2019. "Neighbourhood effects and beyond: Explaining the paradoxes of inequality in the changing American metropolis," Urban Studies, Urban Studies Journal Limited, vol. 56(1), pages 3-32, January.
- Jeong-Hui Park & Eunhye Yoo & Youngdeok Kim & Jung-Min Lee, 2021. "What Happened Pre- and during COVID-19 in South Korea? Comparing Physical Activity, Sleep Time, and Body Weight Status," IJERPH, MDPI, vol. 18(11), pages 1-13, May.
- Matteo Böhm & Mirco Nanni & Luca Pappalardo, 2022. "Gross polluters and vehicle emissions reduction," Nature Sustainability, Nature, vol. 5(8), pages 699-707, August.
- David Kofoed Wind & Piotr Sapiezynski & Magdalena Anna Furman & Sune Lehmann, 2016. "Inferring Stop-Locations from WiFi," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-15, February.
- Zhou, Xingang & Yeh, Anthony G.O. & Yue, Yang, 2018. "Spatial variation of self-containment and jobs-housing balance in Shenzhen using cellphone big data," Journal of Transport Geography, Elsevier, vol. 68(C), pages 102-108.
- Kevin Credit & Zander Arnao, 2023. "A method to derive small area estimates of linked commuting trips by mode from open source LODES and ACS data," Environment and Planning B, , vol. 50(3), pages 709-722, March.
- Zheng Yan & Wenqian Robertson & Yaosheng Lou & Tom W. Robertson & Sung Yong Park, 2021. "Finding leading scholars in mobile phone behavior: a mixed-method analysis of an emerging interdisciplinary field," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9499-9517, December.
- Duan, Zhengyu & Zhao, Haoran & Li, Zhenming, 2023. "Non-linear effects of built environment and socio-demographics on activity space," Journal of Transport Geography, Elsevier, vol. 111(C).
- Elisa Frutos-Bernal & Ángel Martín del Rey & Irene Mariñas-Collado & María Teresa Santos-Martín, 2022. "An Analysis of Travel Patterns in Barcelona Metro Using Tucker3 Decomposition," Mathematics, MDPI, vol. 10(7), pages 1-17, March.
- Zhai, Wei & Bai, Xueyin & Peng, Zhong-ren & Gu, Chaolin, 2019. "From edit distance to augmented space-time-weighted edit distance: Detecting and clustering patterns of human activities in Puget Sound region," Journal of Transport Geography, Elsevier, vol. 78(C), pages 41-55.
- Khajehnejad, Moein, 2019. "Efficiency of long-range navigation on Treelike fractals," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 102-110.
- Chaogui Kang & Yu Liu & Diansheng Guo & Kun Qin, 2015. "A Generalized Radiation Model for Human Mobility: Spatial Scale, Searching Direction and Trip Constraint," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-11, November.
- Yifeng Liu & Yuan Lai, 2024. "Analyzing jogging activity patterns and adaptation to public health regulation," Environment and Planning B, , vol. 51(3), pages 670-688, March.
- Li, Ze-Tao & Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2023. "Exploring the topological characteristics of urban trip networks based on taxi trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
- Claudio Gariazzo & Armando Pelliccioni & Maria Paola Bogliolo, 2019. "Spatiotemporal Analysis of Urban Mobility Using Aggregate Mobile Phone Derived Presence and Demographic Data: A Case Study in the City of Rome, Italy," Data, MDPI, vol. 4(1), pages 1-25, January.
- Han Wang & Damien Fay & Kenneth N. Brown & Liam Kilmartin, 2016. "Modelling revenue generation in a dynamically priced mobile telephony service," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 62(4), pages 711-734, August.
- Toru Nakamura & Toru Takumi & Atsuko Takano & Fumiyuki Hatanaka & Yoshiharu Yamamoto, 2013. "Characterization and Modeling of Intermittent Locomotor Dynamics in Clock Gene-Deficient Mice," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-8, March.
More about this item
Keywords
Social media data; Travel demand; Origin–destination estimation; Longitudinal data; Lateral data; Gravity model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:49:y:2022:i:1:d:10.1007_s11116-021-10171-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.