IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0312541.html
   My bibliography  Save this article

Pattern detection in the vehicular activity of bus rapid transit systems

Author

Listed:
  • Jaspe U Martínez-González
  • Alejandro P. Riascos
  • José L Mateos

Abstract

In this paper, we explore different methods to detect patterns in the activity of bus rapid transit (BRT) systems focusing on two aspects of transit: infrastructure and the movement of vehicles. To this end, we analyze records of velocity and position of each active vehicle in nine BRT systems located in the Americas. We detect collective patterns that characterize each BRT system obtained from the statistical analysis of velocities in the entire system (global scale) and at specific zones (local scale). We analyze the velocity records at the local scale applying the Kullback-Leibler divergence to compare the vehicular activity between zones. This information is organized in a similarity matrix that can be represented as a network of zones. The resulting structure for each system is analyzed using network science methods. In particular, by implementing community detection algorithms on networks, we obtain different groups of zones characterized by similarities in the movement of vehicles. Our findings show that the representation of the dataset with information of vehicles as a network is a useful tool to characterize at different scales the activity of BRT systems when geolocalized records of vehicular movement are available. This general approach can be implemented in the analysis of other public transportation systems.

Suggested Citation

  • Jaspe U Martínez-González & Alejandro P. Riascos & José L Mateos, 2024. "Pattern detection in the vehicular activity of bus rapid transit systems," PLOS ONE, Public Library of Science, vol. 19(10), pages 1-18, October.
  • Handle: RePEc:plo:pone00:0312541
    DOI: 10.1371/journal.pone.0312541
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0312541
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0312541&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0312541?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Syyed Adnan Raheel Shah & Monib Shahzad & Naveed Ahmad & Abdullah Zamad & Sabahat Hussan & Muhammad Asif Aslam & Ahsan Rehman Khan & Muhammad Abdullah Asif & Gullnaz Shahzadi & Muhammad Waseem, 2020. "Performance Evaluation of Bus Rapid Transit System: A Comparative Analysis of Alternative Approaches for Energy Efficient Eco-Friendly Public Transport System," Energies, MDPI, vol. 13(6), pages 1-15, March.
    2. Basso, Leonardo J. & Feres, Fernando & Silva, Hugo E., 2019. "The efficiency of bus rapid transit (BRT) systems: A dynamic congestion approach," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 47-71.
    3. S. C. Wirasinghe & L. Kattan & M. M. Rahman & J. Hubbell & R. Thilakaratne & S. Anowar, 2013. "Bus rapid transit - a review," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 17(1), pages 1-31, March.
    4. Marta C. González & César A. Hidalgo & Albert-László Barabási, 2009. "Understanding individual human mobility patterns," Nature, Nature, vol. 458(7235), pages 238-238, March.
    5. Esteban Moro & Dan Calacci & Xiaowen Dong & Alex Pentland, 2021. "Mobility patterns are associated with experienced income segregation in large US cities," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    6. L. K. Eraso-Hernandez & A. P. Riascos & T. M. Michelitsch & J. Wang-Michelitsch, 2024. "Evolution of transport under cumulative damage in metro systems," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 35(04), pages 1-17, April.
    7. Laura Alessandretti & Piotr Sapiezynski & Vedran Sekara & Sune Lehmann & Andrea Baronchelli, 2018. "Evidence for a conserved quantity in human mobility," Nature Human Behaviour, Nature, vol. 2(7), pages 485-491, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerardo Iñiguez & Carlos Pineda & Carlos Gershenson & Albert-László Barabási, 2022. "Dynamics of ranking," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Junwei Ma & Bo Li & Ali Mostafavi, 2024. "Characterizing urban lifestyle signatures using motif properties in network of places," Environment and Planning B, , vol. 51(4), pages 889-903, May.
    3. Thomas Collins & Riccardo Di Clemente & Mario Gutiérrez-Roig & Federico Botta, 2024. "Spatiotemporal gender differences in urban vibrancy," Environment and Planning B, , vol. 51(7), pages 1430-1446, September.
    4. Allister Loder & Fabienne Cantner & Lennart Adenaw & Nico Nachtigall & David Ziegler & Felix Gotzler & Markus B. Siewert & Stefan Wurster & Sebastian Goerg & Markus Lienkamp & Klaus Bogenberger, 2023. "Germany's nationwide travel experiment in 2022: public transport for 9 Euro per month -- First findings of an empirical study," Papers 2306.08297, arXiv.org.
    5. Cyril Veve & Nicolas Chiabaut, 2020. "Estimation of the shared mobility demand based on the daily regularity of the urban mobility and the similarity of individual trips," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-15, September.
    6. Takahiro Yabe & Bernardo García Bulle Bueno & Xiaowen Dong & Alex Pentland & Esteban Moro, 2023. "Behavioral changes during the COVID-19 pandemic decreased income diversity of urban encounters," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Takahiro Yabe & Bernardo García Bulle Bueno & Morgan R. Frank & Alex Pentland & Esteban Moro, 2025. "Behaviour-based dependency networks between places shape urban economic resilience," Nature Human Behaviour, Nature, vol. 9(3), pages 496-506, March.
    8. Jeong-Hui Park & Eunhye Yoo & Youngdeok Kim & Jung-Min Lee, 2021. "What Happened Pre- and during COVID-19 in South Korea? Comparing Physical Activity, Sleep Time, and Body Weight Status," IJERPH, MDPI, vol. 18(11), pages 1-13, May.
    9. Matteo Böhm & Mirco Nanni & Luca Pappalardo, 2022. "Gross polluters and vehicle emissions reduction," Nature Sustainability, Nature, vol. 5(8), pages 699-707, August.
    10. Su, Rongxiang & Xiao, Jingyi & McBride, Elizabeth C. & Goulias, Konstadinos G., 2021. "Understanding senior's daily mobility patterns in California using human mobility motifs," Journal of Transport Geography, Elsevier, vol. 94(C).
    11. Robert Stewart & Marie Urban & Samantha Duchscherer & Jason Kaufman & April Morton & Gautam Thakur & Jesse Piburn & Jessica Moehl, 2016. "A Bayesian machine learning model for estimating building occupancy from open source data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1929-1956, April.
    12. Arroyo Arroyo,Fatima & Fernandez Gonzalez,Marta & Matekenya,Dunstan & Espinet Alegre,Xavier, 2021. "Using Mobile Data to Understand Urban Mobility Patterns in Freetown, Sierra Leone," Policy Research Working Paper Series 9519, The World Bank.
    13. David Kofoed Wind & Piotr Sapiezynski & Magdalena Anna Furman & Sune Lehmann, 2016. "Inferring Stop-Locations from WiFi," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-15, February.
    14. Zhou, Xingang & Yeh, Anthony G.O. & Yue, Yang, 2018. "Spatial variation of self-containment and jobs-housing balance in Shenzhen using cellphone big data," Journal of Transport Geography, Elsevier, vol. 68(C), pages 102-108.
    15. Maxime Lenormand & Miguel Picornell & Oliva G Cantú-Ros & Antònia Tugores & Thomas Louail & Ricardo Herranz & Marc Barthelemy & Enrique Frías-Martínez & José J Ramasco, 2014. "Cross-Checking Different Sources of Mobility Information," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-10, August.
    16. Patrizia Sulis & Paola Proietti, 2024. "Who can access what? Uncovering urban inequality in access to service for senior citizens," Environment and Planning B, , vol. 51(7), pages 1650-1665, September.
    17. Miotti, Marco & Needell, Zachary A. & Jain, Rishee K., 2023. "The impact of urban form on daily mobility demand and energy use: Evidence from the United States," Applied Energy, Elsevier, vol. 339(C).
    18. Zheng Yan & Wenqian Robertson & Yaosheng Lou & Tom W. Robertson & Sung Yong Park, 2021. "Finding leading scholars in mobile phone behavior: a mixed-method analysis of an emerging interdisciplinary field," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9499-9517, December.
    19. Huang, Feihu & Qiao, Shaojie & Peng, Jian & Guo, Bing & Xiong, Xi & Han, Nan, 2019. "A movement model for air passengers based on trip purpose," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 798-808.
    20. Duan, Zhengyu & Zhao, Haoran & Li, Zhenming, 2023. "Non-linear effects of built environment and socio-demographics on activity space," Journal of Transport Geography, Elsevier, vol. 111(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0312541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.