IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v52y2025i1d10.1007_s11116-023-10416-x.html
   My bibliography  Save this article

Flow count data-driven static traffic assignment models through network modularity partitioning

Author

Listed:
  • Alexander Roocroft

    (University of Sheffield
    A*STAR)

  • Giuliano Punzo

    (University of Sheffield)

  • Muhamad Azfar Ramli

    (A*STAR)

Abstract

Accurate static traffic assignment models are important tools for the assessment of strategic transportation policies. In this article we present a novel approach to partition road networks through network modularity to produce data-driven static traffic assignment models from loop detector data on large road systems. The use of partitioning allows the estimation of the key model input of Origin–Destination demand matrices from flow counts alone. Previous network tomography-based demand estimation techniques have been limited by the network size. The amount of partitioning changes the Origin–Destination estimation optimisation problems to different levels of computational difficulty. Different approaches to utilising the partitioning were tested, one which degenerated the road network to the scale of the partitions and others which left the network intact. Applied to a subnetwork of England’s Strategic Road Network and other test networks, our results for the degenerate case showed flow and travel time errors are reasonable with a small amount of degeneration. The results for the non-degenerate cases showed that similar errors in model prediction with lower computation requirements can be obtained when using large partitions compared with the non-partitioned case. This work could be used to improve the effectiveness of national road systems planning and infrastructure models.

Suggested Citation

  • Alexander Roocroft & Giuliano Punzo & Muhamad Azfar Ramli, 2025. "Flow count data-driven static traffic assignment models through network modularity partitioning," Transportation, Springer, vol. 52(1), pages 185-214, February.
  • Handle: RePEc:kap:transp:v:52:y:2025:i:1:d:10.1007_s11116-023-10416-x
    DOI: 10.1007/s11116-023-10416-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-023-10416-x
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-023-10416-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andreas Dypvik Landmark & Petter Arnesen & Carl-Johan Södersten & Odd André Hjelkrem, 2021. "Mobile phone data in transportation research: methods for benchmarking against other data sources," Transportation, Springer, vol. 48(5), pages 2883-2905, October.
    2. Hazelton, Martin L., 2000. "Estimation of origin-destination matrices from link flows on uncongested networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(7), pages 549-566, September.
    3. Blainey, Simon P. & Preston, John M., 2019. "Predict or prophesy? Issues and trade-offs in modelling long-term transport infrastructure demand and capacity," Transport Policy, Elsevier, vol. 74(C), pages 165-173.
    4. Silvano, Ary P. & Koutsopoulos, Haris N. & Farah, Haneen, 2020. "Free flow speed estimation: A probabilistic, latent approach. Impact of speed limit changes and road characteristics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 283-298.
    5. Mojtaba Rostami Nasab & Yousef Shafahi, 2020. "Estimation of origin–destination matrices using link counts and partial path data," Transportation, Springer, vol. 47(6), pages 2923-2950, December.
    6. Hazelton, Martin L., 2003. "Some comments on origin-destination matrix estimation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(10), pages 811-822, December.
    7. Lundgren, Jan T. & Peterson, Anders, 2008. "A heuristic for the bilevel origin-destination-matrix estimation problem," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 339-354, May.
    8. Martin L. Hazelton, 2001. "Estimation of origin–destination trip rates in Leicester," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(4), pages 423-433.
    9. T. Abrahamsson, 1998. "Estimation of Origin-Destination Matrices Using Traffic Counts- A Literature Survey," Working Papers ir98021, International Institute for Applied Systems Analysis.
    10. Yuan Liao & Sonia Yeh & Jorge Gil, 2022. "Feasibility of estimating travel demand using geolocations of social media data," Transportation, Springer, vol. 49(1), pages 137-161, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shao, Hu & Lam, William H.K. & Sumalee, Agachai & Chen, Anthony & Hazelton, Martin L., 2014. "Estimation of mean and covariance of peak hour origin–destination demands from day-to-day traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 52-75.
    2. Hazelton, Martin L. & Najim, Lara, 2024. "Using traffic assignment models to assist Bayesian inference for origin–destination matrices," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
    3. Hazelton, Martin L., 2008. "Statistical inference for time varying origin-destination matrices," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 542-552, July.
    4. Hazelton, Martin L., 2010. "Bayesian inference for network-based models with a linear inverse structure," Transportation Research Part B: Methodological, Elsevier, vol. 44(5), pages 674-685, June.
    5. S. Dempe & A. Zemkoho, 2012. "Bilevel road pricing: theoretical analysis and optimality conditions," Annals of Operations Research, Springer, vol. 196(1), pages 223-240, July.
    6. Anselmo Ramalho Pitombeira-Neto & Carlos Felipe Grangeiro Loureiro & Luis Eduardo Carvalho, 2020. "A Dynamic Hierarchical Bayesian Model for the Estimation of day-to-day Origin-destination Flows in Transportation Networks," Networks and Spatial Economics, Springer, vol. 20(2), pages 499-527, June.
    7. Flurin S. Hänseler & Nicholas A. Molyneaux & Michel Bierlaire, 2017. "Estimation of Pedestrian Origin-Destination Demand in Train Stations," Transportation Science, INFORMS, vol. 51(3), pages 981-997, August.
    8. Hazelton, Martin L., 2003. "Some comments on origin-destination matrix estimation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(10), pages 811-822, December.
    9. Blume, Steffen O.P. & Corman, Francesco & Sansavini, Giovanni, 2022. "Bayesian origin-destination estimation in networked transit systems using nodal in- and outflow counts," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 60-94.
    10. Yang, Yudi & Fan, Yueyue & Royset, Johannes O., 2019. "Estimating probability distributions of travel demand on a congested network," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 265-286.
    11. Yang, Yudi & Fan, Yueyue, 2015. "Data dependent input control for origin–destination demand estimation using observability analysis," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 385-403.
    12. Kumar, Anshuman Anjani & Kang, Jee Eun & Kwon, Changhyun & Nikolaev, Alexander, 2016. "Inferring origin-destination pairs and utility-based travel preferences of shared mobility system users in a multi-modal environment," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 270-291.
    13. Barroso, Joana Maia Fernandes & Albuquerque-Oliveira, João Lucas & Oliveira-Neto, Francisco Moraes, 2020. "Correlation analysis of day-to-day origin-destination flows and traffic volumes in urban networks," Journal of Transport Geography, Elsevier, vol. 89(C).
    14. D'Acierno, Luca & Cartenì, Armando & Montella, Bruno, 2009. "Estimation of urban traffic conditions using an Automatic Vehicle Location (AVL) System," European Journal of Operational Research, Elsevier, vol. 196(2), pages 719-736, July.
    15. Huo, Jinbiao & Liu, Chengqi & Chen, Jingxu & Meng, Qiang & Wang, Jian & Liu, Zhiyuan, 2023. "Simulation-based dynamic origin–destination matrix estimation on freeways: A Bayesian optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    16. Fan, Yueyue & Yang, Han & Maheshwari, Saurabh & Yang, Yudi, 2020. "Improving Transportation Information Resilience: Error Estimation for Networked Sensor Data," Institute of Transportation Studies, Working Paper Series qt3t15p3cs, Institute of Transportation Studies, UC Davis.
    17. Tu Anh Trinh & Ducksu Seo & Unchong Kim & Thi Nhu Quynh Phan & Thi Hai Hang Nguyen, 2022. "Air Transport Centrality as a Driver of Sustainable Regional Growth: A Case of Vietnam," Sustainability, MDPI, vol. 14(15), pages 1-14, August.
    18. Shahabi, Cyrus & Kim, Seon Ho, 2023. "Evaluating Accessibility of Los Angeles Metropolitan Area Using Data-Driven Time-Dependent Reachability Analysis," Institute of Transportation Studies, Working Paper Series qt7pm429tk, Institute of Transportation Studies, UC Davis.
    19. Castillo, Enrique & Menéndez, José María & Sánchez-Cambronero, Santos, 2008. "Predicting traffic flow using Bayesian networks," Transportation Research Part B: Methodological, Elsevier, vol. 42(5), pages 482-509, June.
    20. Zhang, Yijia & Cheng, Lu, 2023. "The role of transport infrastructure in economic growth: Empirical evidence in the UK," Transport Policy, Elsevier, vol. 133(C), pages 223-233.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:52:y:2025:i:1:d:10.1007_s11116-023-10416-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.