IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v81y2016i3d10.1007_s11069-016-2164-9.html
   My bibliography  Save this article

A Bayesian machine learning model for estimating building occupancy from open source data

Author

Listed:
  • Robert Stewart

    (Oak Ridge National Laboratory)

  • Marie Urban

    (Oak Ridge National Laboratory)

  • Samantha Duchscherer

    (Oak Ridge Associated Universities)

  • Jason Kaufman

    (Oak Ridge Associated Universities)

  • April Morton

    (Oak Ridge Associated Universities)

  • Gautam Thakur

    (Oak Ridge National Laboratory)

  • Jesse Piburn

    (Oak Ridge National Laboratory)

  • Jessica Moehl

    (Oak Ridge Associated Universities)

Abstract

Understanding building occupancy is critical to a wide array of applications including natural hazards loss analysis, green building technologies, and population distribution modeling. Due to the expense of directly monitoring buildings, scientists rely in addition on a wide and disparate array of ancillary and open source information including subject matter expertise, survey data, and remote sensing information. These data are fused using data harmonization methods, which refer to a loose collection of formal and informal techniques for fusing data together to create viable content for building occupancy estimation. In this paper, we add to the current state of the art by introducing the population data tables (PDT), a Bayesian model and informatics system for systematically arranging data and harmonization techniques into a consistent, transparent, knowledge learning framework that retains in the final estimation uncertainty emerging from data, expert judgment, and model parameterization. PDT aims to estimate ambient occupancy in units of people/1000 ft2 for a number of building types at the national and sub-national level with the goal of providing global coverage. We present the PDT model, situate the work within the larger community, and report on the progress of this multi-year project.

Suggested Citation

  • Robert Stewart & Marie Urban & Samantha Duchscherer & Jason Kaufman & April Morton & Gautam Thakur & Jesse Piburn & Jessica Moehl, 2016. "A Bayesian machine learning model for estimating building occupancy from open source data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1929-1956, April.
  • Handle: RePEc:spr:nathaz:v:81:y:2016:i:3:d:10.1007_s11069-016-2164-9
    DOI: 10.1007/s11069-016-2164-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2164-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2164-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F. C. Billari & R. Graziani & E. Melilli, 2012. "Stochastic population forecasts based on conditional expert opinions," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(2), pages 491-511, April.
    2. Garthwaite, Paul H. & Kadane, Joseph B. & O'Hagan, Anthony, 2005. "Statistical Methods for Eliciting Probability Distributions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 680-701, June.
    3. Wisse, Bram & Bedford, Tim & Quigley, John, 2008. "Expert judgement combination using moment methods," Reliability Engineering and System Safety, Elsevier, vol. 93(5), pages 675-686.
    4. Robert Schlich & Kay Axhausen, 2003. "Habitual travel behaviour: Evidence from a six-week travel diary," Transportation, Springer, vol. 30(1), pages 13-36, February.
    5. Anastasios Noulas & Salvatore Scellato & Renaud Lambiotte & Massimiliano Pontil & Cecilia Mascolo, 2012. "A Tale of Many Cities: Universal Patterns in Human Urban Mobility," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-10, May.
    6. Marta C. González & César A. Hidalgo & Albert-László Barabási, 2009. "Understanding individual human mobility patterns," Nature, Nature, vol. 458(7235), pages 238-238, March.
    7. F. Dell’Acqua & P. Gamba & K. Jaiswal, 2013. "Spatial aspects of building and population exposure data and their implications for global earthquake exposure modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1291-1309, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marie Urban & Robert Stewart & Scott Basford & Zachary Palmer & Jason Kaufman, 2023. "Estimating building occupancy: a machine learning system for day, night, and episodic events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2417-2436, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaogui Kang & Yu Liu & Diansheng Guo & Kun Qin, 2015. "A Generalized Radiation Model for Human Mobility: Spatial Scale, Searching Direction and Trip Constraint," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-11, November.
    2. Han Wang & Damien Fay & Kenneth N. Brown & Liam Kilmartin, 2016. "Modelling revenue generation in a dynamically priced mobile telephony service," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 62(4), pages 711-734, August.
    3. Ma, Xinwei & Tian, Xiaolin & Jin, Zejin & Cui, Hongjun & Ji, Yanjie & Cheng, Long, 2024. "Evaluation and determinants of metro users' regularity: Insights from transit one-card data," Journal of Transport Geography, Elsevier, vol. 118(C).
    4. Saberi, Meead & Ghamami, Mehrnaz & Gu, Yi & Shojaei, Mohammad Hossein (Sam) & Fishman, Elliot, 2018. "Understanding the impacts of a public transit disruption on bicycle sharing mobility patterns: A case of Tube strike in London," Journal of Transport Geography, Elsevier, vol. 66(C), pages 154-166.
    5. Ed Manley & Chen Zhong & Michael Batty, 2018. "Spatiotemporal variation in travel regularity through transit user profiling," Transportation, Springer, vol. 45(3), pages 703-732, May.
    6. Zhenhua Chen & Laurie Schintler, 2015. "Sensitivity of location-sharing services data: evidence from American travel pattern," Transportation, Springer, vol. 42(4), pages 669-682, July.
    7. Maxime Lenormand & Antònia Tugores & Pere Colet & José J Ramasco, 2014. "Tweets on the Road," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-12, August.
    8. Rezapour, Shabnam & Baghaian, Atefe & Naderi, Nazanin & Sarmiento, Juan P., 2023. "Infection transmission and prevention in metropolises with heterogeneous and dynamic populations," European Journal of Operational Research, Elsevier, vol. 304(1), pages 113-138.
    9. Fan Yang & Zhenxing Yao & Fan Ding & Huachun Tan & Bin Ran, 2019. "Understanding Urban Mobility Pattern with Cellular Phone Data: A Case Study of Residents and Travelers in Nanjing," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
    10. Sanja Šćepanović & Igor Mishkovski & Pan Hui & Jukka K Nurminen & Antti Ylä-Jääski, 2015. "Mobile Phone Call Data as a Regional Socio-Economic Proxy Indicator," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-15, April.
    11. Lingjing Wang & Cheng Qian & Philipp Kats & Constantine Kontokosta & Stanislav Sobolevsky, 2017. "Structure of 311 service requests as a signature of urban location," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-21, October.
    12. Chua, Alvin & Servillo, Loris & Marcheggiani, Ernesto & Moere, Andrew Vande, 2016. "Mapping Cilento: Using geotagged social media data to characterize tourist flows in southern Italy," Tourism Management, Elsevier, vol. 57(C), pages 295-310.
    13. Maxime Lenormand & Miguel Picornell & Oliva G Cantú-Ros & Antònia Tugores & Thomas Louail & Ricardo Herranz & Marc Barthelemy & Enrique Frías-Martínez & José J Ramasco, 2014. "Cross-Checking Different Sources of Mobility Information," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-10, August.
    14. Huang, Feihu & Qiao, Shaojie & Peng, Jian & Guo, Bing & Xiong, Xi & Han, Nan, 2019. "A movement model for air passengers based on trip purpose," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 798-808.
    15. Gerardo Iñiguez & Carlos Pineda & Carlos Gershenson & Albert-László Barabási, 2022. "Dynamics of ranking," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    16. Raja Jurdak, 2013. "The Impact of Cost and Network Topology on Urban Mobility: A Study of Public Bicycle Usage in 2 U.S. Cities," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-6, November.
    17. Nimrod Serok & Efrat Blumenfeld-Lieberthal, 2015. "A Simulation Model for Intra-Urban Movements," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-15, July.
    18. Sheng Wei & Jinfu Yuan & Yanning Qiu & Xiali Luan & Shanrui Han & Wen Zhou & Chi Xu, 2017. "Exploring the potential of open big data from ticketing websites to characterize travel patterns within the Chinese high-speed rail system," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-13, June.
    19. Gianni Corsetti & Marco Marsili, 2013. "Previsioni stocastiche della popolazione nell’ottica di un Istituto Nazionale di Statistica," Rivista di statistica ufficiale, ISTAT - Italian National Institute of Statistics - (Rome, ITALY), vol. 15(2-3), pages 5-29.
    20. Jeong-Hui Park & Eunhye Yoo & Youngdeok Kim & Jung-Min Lee, 2021. "What Happened Pre- and during COVID-19 in South Korea? Comparing Physical Activity, Sleep Time, and Body Weight Status," IJERPH, MDPI, vol. 18(11), pages 1-13, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:81:y:2016:i:3:d:10.1007_s11069-016-2164-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.