IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i19p5502-d273603.html
   My bibliography  Save this article

Understanding Urban Mobility Pattern with Cellular Phone Data: A Case Study of Residents and Travelers in Nanjing

Author

Listed:
  • Fan Yang

    (Jiangsu Key Laboratory of Urban ITS, Southeast University, Nanjing 211189, China
    Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Southeast University, Nanjing 211189, China
    School of Transportation, Southeast University, Nanjing 211189, China)

  • Zhenxing Yao

    (School of Highway, Chang’an University, Xi’an 710064, China)

  • Fan Ding

    (Jiangsu Key Laboratory of Urban ITS, Southeast University, Nanjing 211189, China
    Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Southeast University, Nanjing 211189, China
    School of Transportation, Southeast University, Nanjing 211189, China)

  • Huachun Tan

    (Jiangsu Key Laboratory of Urban ITS, Southeast University, Nanjing 211189, China
    Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Southeast University, Nanjing 211189, China
    School of Transportation, Southeast University, Nanjing 211189, China)

  • Bin Ran

    (Jiangsu Key Laboratory of Urban ITS, Southeast University, Nanjing 211189, China
    Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Southeast University, Nanjing 211189, China
    School of Transportation, Southeast University, Nanjing 211189, China)

Abstract

The rapid development of urban metropolises has attracted a growing number of immigrants and travelers, increasing the burden on transportation systems. Previous research on urban mobility patterns have ignored the temporal variations and heterogeneity in divergent urban trip makers due to the limited data resolution and coverage. In this paper, we analyzed cellular phone data of more than five million travelers for one month in Nanjing, China and proposed a method to extract trip origin and destination information from cellular phone signal data. We found that mobility patterns are different for urban residents, short-term travelers, and transfer travelers, and that trip length distributions can best be described by gamma and exponential distributions. In addition to the daily trip length distribution models, we utilized the agglomerative hieratical clustering method in order to group similar hourly trip patterns and further proposed within-day trip length distribution models under different times of the day and days of the week.

Suggested Citation

  • Fan Yang & Zhenxing Yao & Fan Ding & Huachun Tan & Bin Ran, 2019. "Understanding Urban Mobility Pattern with Cellular Phone Data: A Case Study of Residents and Travelers in Nanjing," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5502-:d:273603
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/19/5502/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/19/5502/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tongtong Liu & Zheng Yang & Yi Zhao & Chenshu Wu & Zimu Zhou & Yunhao Liu, 2018. "Temporal understanding of human mobility: A multi-time scale analysis," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-15, November.
    2. Laura Alessandretti & Piotr Sapiezynski & Sune Lehmann & Andrea Baronchelli, 2017. "Multi-scale spatio-temporal analysis of human mobility," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-17, February.
    3. Wang Chen & Qiang Gao & Hua-Gang Xiong, 2017. "Uncovering urban mobility patterns and impact of spatial distribution of places on movements," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 28(01), pages 1-16, January.
    4. David Karemera & Victor Iwuagwu Oguledo & Bobby Davis, 2000. "A gravity model analysis of international migration to North America," Applied Economics, Taylor & Francis Journals, vol. 32(13), pages 1745-1755.
    5. Anastasios Noulas & Salvatore Scellato & Renaud Lambiotte & Massimiliano Pontil & Cecilia Mascolo, 2012. "A Tale of Many Cities: Universal Patterns in Human Urban Mobility," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-10, May.
    6. Marta C. González & César A. Hidalgo & Albert-László Barabási, 2009. "Understanding individual human mobility patterns," Nature, Nature, vol. 458(7235), pages 238-238, March.
    7. D. Brockmann & L. Hufnagel & T. Geisel, 2006. "The scaling laws of human travel," Nature, Nature, vol. 439(7075), pages 462-465, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miller, Seth & Laan, Zachary Vander & Marković, Nikola, 2020. "Scaling GPS trajectories to match point traffic counts: A convex programming approach and Utah case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    2. Fan Yang & Linchao Li & Fan Ding & Huachun Tan & Bin Ran, 2020. "A Data-Driven Approach to Trip Generation Modeling for Urban Residents and Non-local Travelers," Sustainability, MDPI, vol. 12(18), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maxime Lenormand & Miguel Picornell & Oliva G Cantú-Ros & Antònia Tugores & Thomas Louail & Ricardo Herranz & Marc Barthelemy & Enrique Frías-Martínez & José J Ramasco, 2014. "Cross-Checking Different Sources of Mobility Information," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-10, August.
    2. Huang, Feihu & Qiao, Shaojie & Peng, Jian & Guo, Bing & Xiong, Xi & Han, Nan, 2019. "A movement model for air passengers based on trip purpose," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 798-808.
    3. Chaogui Kang & Yu Liu & Diansheng Guo & Kun Qin, 2015. "A Generalized Radiation Model for Human Mobility: Spatial Scale, Searching Direction and Trip Constraint," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-11, November.
    4. Saberi, Meead & Ghamami, Mehrnaz & Gu, Yi & Shojaei, Mohammad Hossein (Sam) & Fishman, Elliot, 2018. "Understanding the impacts of a public transit disruption on bicycle sharing mobility patterns: A case of Tube strike in London," Journal of Transport Geography, Elsevier, vol. 66(C), pages 154-166.
    5. Raja Jurdak, 2013. "The Impact of Cost and Network Topology on Urban Mobility: A Study of Public Bicycle Usage in 2 U.S. Cities," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-6, November.
    6. Rezapour, Shabnam & Baghaian, Atefe & Naderi, Nazanin & Sarmiento, Juan P., 2023. "Infection transmission and prevention in metropolises with heterogeneous and dynamic populations," European Journal of Operational Research, Elsevier, vol. 304(1), pages 113-138.
    7. Nimrod Serok & Efrat Blumenfeld-Lieberthal, 2015. "A Simulation Model for Intra-Urban Movements," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-15, July.
    8. Sanja Šćepanović & Igor Mishkovski & Pan Hui & Jukka K Nurminen & Antti Ylä-Jääski, 2015. "Mobile Phone Call Data as a Regional Socio-Economic Proxy Indicator," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-15, April.
    9. Sheng Wei & Jinfu Yuan & Yanning Qiu & Xiali Luan & Shanrui Han & Wen Zhou & Chi Xu, 2017. "Exploring the potential of open big data from ticketing websites to characterize travel patterns within the Chinese high-speed rail system," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-13, June.
    10. Laura Alessandretti & Luis Guillermo Natera Orozco & Meead Saberi & Michael Szell & Federico Battiston, 2023. "Multimodal urban mobility and multilayer transport networks," Environment and Planning B, , vol. 50(8), pages 2038-2070, October.
    11. Robert Stewart & Marie Urban & Samantha Duchscherer & Jason Kaufman & April Morton & Gautam Thakur & Jesse Piburn & Jessica Moehl, 2016. "A Bayesian machine learning model for estimating building occupancy from open source data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1929-1956, April.
    12. Shanshan Wan & Zhuo Chen & Cheng Lyu & Ruofan Li & Yuntao Yue & Ying Liu, 2022. "Research on disaster information dissemination based on social sensor networks," International Journal of Distributed Sensor Networks, , vol. 18(3), pages 15501329221, March.
    13. Li, Ze-Tao & Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2023. "Exploring the topological characteristics of urban trip networks based on taxi trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    14. Cai, Hua & Zhan, Xiaowei & Zhu, Ji & Jia, Xiaoping & Chiu, Anthony S.F. & Xu, Ming, 2016. "Understanding taxi travel patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 590-597.
    15. Han Wang & Damien Fay & Kenneth N. Brown & Liam Kilmartin, 2016. "Modelling revenue generation in a dynamically priced mobile telephony service," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 62(4), pages 711-734, August.
    16. Toru Nakamura & Toru Takumi & Atsuko Takano & Fumiyuki Hatanaka & Yoshiharu Yamamoto, 2013. "Characterization and Modeling of Intermittent Locomotor Dynamics in Clock Gene-Deficient Mice," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-8, March.
    17. Chen, Roger B., 2018. "Models of count with endogenous choices," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 862-875.
    18. Wang, Wenjun & Pan, Lin & Yuan, Ning & Zhang, Sen & Liu, Dong, 2015. "A comparative analysis of intra-city human mobility by taxi," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 134-147.
    19. Barmak, D.H. & Dorso, C.O. & Otero, M., 2016. "Modelling dengue epidemic spreading with human mobility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 129-140.
    20. Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2022. "Revealing mobility pattern of taxi movements with its travel trajectory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5502-:d:273603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.