IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0272863.html
   My bibliography  Save this article

Recent advances in urban system science: Models and data

Author

Listed:
  • Elsa Arcaute
  • José J Ramasco

Abstract

Cities are characterized by the presence of a dense population with a high potential for interactions between individuals of diverse backgrounds. They appear in parallel to the Neolithic revolution a few millennia ago. The advantages brought in terms of agglomeration for economy, innovation, social and cultural advancements have kept them as a major landmark in recent human history. There are many different aspects to study in urban systems from a scientific point of view, one can concentrate in demography and population evolution, mobility, economic output, land use and urban planning, home accessibility and real estate market, energy and water consumption, waste processing, health, education, integration of minorities, just to name a few. In the last decade, the introduction of communication and information technologies have enormously facilitated the collection of datasets on these and other questions, making possible a more quantitative approach to city science. All these topics have been addressed in many works in the literature, and we do not intend to offer here a systematic review. Instead, we will only provide a brief taste of some of these above-mentioned aspects, which could serve as an introduction to the collection ‘Cities as Complex Systems’. Such a non-systematic view will lead us to leave outside many relevant papers, and for this we must apologise.

Suggested Citation

  • Elsa Arcaute & José J Ramasco, 2022. "Recent advances in urban system science: Models and data," PLOS ONE, Public Library of Science, vol. 17(8), pages 1-16, August.
  • Handle: RePEc:plo:pone00:0272863
    DOI: 10.1371/journal.pone.0272863
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0272863
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0272863&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0272863?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. repec:cai:popine:popu_p1998_10n1_0240 is not listed on IDEAS
    2. Edward L. Glaeser, 2010. "Introduction to "Agglomeration Economics"," NBER Chapters, in: Agglomeration Economics, pages 1-14, National Bureau of Economic Research, Inc.
    3. Przemyslaw A Grabowicz & José J Ramasco & Bruno Gonçalves & Víctor M Eguíluz, 2014. "Entangling Mobility and Interactions in Social Media," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-12, March.
    4. Edward L. Glaeser, 2010. "Agglomeration Economics," NBER Books, National Bureau of Economic Research, Inc, number glae08-1, October.
    5. Horacio Samaniego & Melanie E. Moses, 2008. "Cities as Organisms: Allometric Scaling of Urban Road Networks," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 1(1), pages 21-39.
    6. Isabelle Thomas & Pierre Frankhauser & Benoit Frenay & Michel Verleysen, 2010. "Clustering Patterns of Urban Built-up Areas with Curves of Fractal Scaling Behaviour," Environment and Planning B, , vol. 37(5), pages 942-954, October.
    7. Juan Carrasco & Eric Miller, 2006. "Exploring the propensity to perform social activities: a social network approach," Transportation, Springer, vol. 33(5), pages 463-480, September.
    8. Jose Lobo & Luis MA Bettencourt & Michael E Smith & Scott Ortman, 2020. "Settlement scaling theory: Bridging the study of ancient and contemporary urban systems," Urban Studies, Urban Studies Journal Limited, vol. 57(4), pages 731-747, March.
    9. Mattia Mazzoli & Alex Molas & Aleix Bassolas & Maxime Lenormand & Pere Colet & José J. Ramasco, 2019. "Field theory for recurrent mobility," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    10. Vincent Verbavatz & Marc Barthelemy, 2020. "The growth equation of cities," Nature, Nature, vol. 587(7834), pages 397-401, November.
    11. Boeing, Geoff, 2017. "OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks," SocArXiv q86sd, Center for Open Science.
    12. Porta, Sergio & Crucitti, Paolo & Latora, Vito, 2006. "The network analysis of urban streets: A dual approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 853-866.
    13. Siaw Akwawua & James A. Pooler, 2001. "The development of an intervening opportunities model with spatial dominance effects," Journal of Geographical Systems, Springer, vol. 3(1), pages 69-86, May.
    14. repec:osf:socarx:q86sd_v1 is not listed on IDEAS
    15. David Karemera & Victor Iwuagwu Oguledo & Bobby Davis, 2000. "A gravity model analysis of international migration to North America," Applied Economics, Taylor & Francis Journals, vol. 32(13), pages 1745-1755.
    16. Marta C. González & César A. Hidalgo & Albert-László Barabási, 2009. "Understanding individual human mobility patterns," Nature, Nature, vol. 458(7235), pages 238-238, March.
    17. Aleix Bassolas & Hugo Barbosa-Filho & Brian Dickinson & Xerxes Dotiwalla & Paul Eastham & Riccardo Gallotti & Gourab Ghoshal & Bryant Gipson & Surendra A. Hazarie & Henry Kautz & Onur Kucuktunc & Alli, 2019. "Hierarchical organization of urban mobility and its connection with city livability," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    18. Roberto Patuelli & Aura Reggiani & Sean Gorman & Peter Nijkamp & Franz-Josef Bade, 2007. "Network Analysis of Commuting Flows: A Comparative Static Approach to German Data," Networks and Spatial Economics, Springer, vol. 7(4), pages 315-331, December.
    19. D. Brockmann & L. Hufnagel & T. Geisel, 2006. "The scaling laws of human travel," Nature, Nature, vol. 439(7075), pages 462-465, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pengjun Zhao & Hao Wang & Qiyang Liu & Xiao-Yong Yan & Jingzhong Li, 2024. "Unravelling the spatial directionality of urban mobility," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Xingye Tan & Bo Huang & Michael Batty & Weiyu Li & Qi Ryan Wang & Yulun Zhou & Peng Gong, 2025. "The spatiotemporal scaling laws of urban population dynamics," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    3. Yang, Hu & Lv, Sirui & Guo, Bao & Dai, Jianjun & Wang, Pu, 2024. "Uncovering spatiotemporal human mobility patterns in urban agglomerations: A mobility field based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    4. Li, Ze-Tao & Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2023. "Exploring the topological characteristics of urban trip networks based on taxi trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    5. Rezapour, Shabnam & Baghaian, Atefe & Naderi, Nazanin & Sarmiento, Juan P., 2023. "Infection transmission and prevention in metropolises with heterogeneous and dynamic populations," European Journal of Operational Research, Elsevier, vol. 304(1), pages 113-138.
    6. Fan Yang & Zhenxing Yao & Fan Ding & Huachun Tan & Bin Ran, 2019. "Understanding Urban Mobility Pattern with Cellular Phone Data: A Case Study of Residents and Travelers in Nanjing," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
    7. Laura Alessandretti & Luis Guillermo Natera Orozco & Meead Saberi & Michael Szell & Federico Battiston, 2023. "Multimodal urban mobility and multilayer transport networks," Environment and Planning B, , vol. 50(8), pages 2038-2070, October.
    8. Matteo Böhm & Mirco Nanni & Luca Pappalardo, 2022. "Gross polluters and vehicle emissions reduction," Nature Sustainability, Nature, vol. 5(8), pages 699-707, August.
    9. Irene Alfarone & Ugo Merlone, 2024. "Should I stay or should I go: A dynamical model of musicians’ agglomeration and migration," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(1), pages 97-116, February.
    10. T. Gries & R. Grundmann & I. Palnau & M. Redlin, 2017. "Innovations, growth and participation in advanced economies - a review of major concepts and findings," International Economics and Economic Policy, Springer, vol. 14(2), pages 293-351, April.
    11. Miguel Picornell & Tomás Ruiz & Maxime Lenormand & José Ramasco & Thibaut Dubernet & Enrique Frías-Martínez, 2015. "Exploring the potential of phone call data to characterize the relationship between social network and travel behavior," Transportation, Springer, vol. 42(4), pages 647-668, July.
    12. Tobias Schlegel & Curdin Pfister & Dietmar Harhoff & Uschi Backes-Gellner, 2022. "Innovation effects of universities of applied sciences: an assessment of regional heterogeneity," The Journal of Technology Transfer, Springer, vol. 47(1), pages 63-118, February.
    13. Brinkley, Catherine & Raj, Subhashni, 2022. "Perfusion and urban thickness: The shape of cities," Land Use Policy, Elsevier, vol. 115(C).
    14. Partha Mukhopadhyay & Marie‐Hélène Zérah & Eric Denis, 2020. "Subaltern Urbanization: Indian Insights for Urban Theory," International Journal of Urban and Regional Research, Wiley Blackwell, vol. 44(4), pages 582-598, July.
    15. Chaogui Kang & Yu Liu & Diansheng Guo & Kun Qin, 2015. "A Generalized Radiation Model for Human Mobility: Spatial Scale, Searching Direction and Trip Constraint," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-11, November.
    16. Dieter Pennerstorfer & Nora Schindler & Christoph Weiss & Biliana Yontcheva, 2020. "Income Inequality and Product Variety: Empirical Evidence," Economics working papers 2020-17, Department of Economics, Johannes Kepler University Linz, Austria.
    17. repec:osf:osfxxx:gwumt_v1 is not listed on IDEAS
    18. Toru Nakamura & Toru Takumi & Atsuko Takano & Fumiyuki Hatanaka & Yoshiharu Yamamoto, 2013. "Characterization and Modeling of Intermittent Locomotor Dynamics in Clock Gene-Deficient Mice," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-8, March.
    19. Melissa Haller & David L. Rigby, 2020. "The geographic evolution of optics technologies in the United States, 1976–2010," Papers in Regional Science, Wiley Blackwell, vol. 99(6), pages 1539-1559, December.
    20. Corral, Paul & Radchenko, Natalia, 2017. "What’s So Spatial about Diversification in Nigeria?," World Development, Elsevier, vol. 95(C), pages 231-253.
    21. Barmak, D.H. & Dorso, C.O. & Otero, M., 2016. "Modelling dengue epidemic spreading with human mobility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 129-140.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0272863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.