IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v123y2025ics096669232400317x.html
   My bibliography  Save this article

Exploring biases in travel behavior patterns in big passively generated mobile data from 11 U.S. cities

Author

Listed:
  • Wang, Yanchao
  • Guan, Xiangyang
  • Ugurel, Ekin
  • Chen, Cynthia
  • Huang, Shuai
  • Wang, Qi R.

Abstract

Passively generated mobile data has increasingly become a crucial source for studying human mobility; however, research addressing potential biases within these datasets remains scarce. This study delves into the critical issue of inherent biases in mobile data, a resource that has transformed the study of human mobility. Using a well-established mobile dataset, we analyze biases in 11 diverse metropolitan statistical areas (MSAs) and spotlight disparities in data quality and mobility metric biases, as compared to the National Household Travel Survey (NHTS). A two-level hierarchical linear regression model unveils the contributing factors to these biases, most notably, data quality, user sociodemographic traits, and city sizes. We further highlight the unexpected introduction of uncertainty by stay-point algorithms during data processing. The findings of our research underscore the necessity of meticulously identifying, understanding, and mitigating such biases in mobile data before its deployment in shaping transportation policies and investments. Ultimately, our study advances our understanding of bias in mobility data, which is a fundamental step towards refining methodologies that can effectively address these biases, thereby enhance the value and accuracy of mobile data in transportation studies.

Suggested Citation

  • Wang, Yanchao & Guan, Xiangyang & Ugurel, Ekin & Chen, Cynthia & Huang, Shuai & Wang, Qi R., 2025. "Exploring biases in travel behavior patterns in big passively generated mobile data from 11 U.S. cities," Journal of Transport Geography, Elsevier, vol. 123(C).
  • Handle: RePEc:eee:jotrge:v:123:y:2025:i:c:s096669232400317x
    DOI: 10.1016/j.jtrangeo.2024.104108
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096669232400317X
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2024.104108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. repec:nas:journl:v:115:y:2018:p:7735-7740 is not listed on IDEAS
    2. Masahiko Haraguchi & Akihiko Nishino & Akira Kodaka & Maura Allaire & Upmanu Lall & Liao Kuei-Hsien & Kaya Onda & Kota Tsubouchi & Naohiko Kohtake, 2022. "Human mobility data and analysis for urban resilience: A systematic review," Environment and Planning B, , vol. 49(5), pages 1507-1535, June.
    3. Alberto Aleta & David Martín-Corral & Ana Pastore y Piontti & Marco Ajelli & Maria Litvinova & Matteo Chinazzi & Natalie E. Dean & M. Elizabeth Halloran & Ira M. Longini Jr & Stefano Merler & Alex Pen, 2020. "Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19," Nature Human Behaviour, Nature, vol. 4(9), pages 964-971, September.
    4. Hong, Shuyao & Zhao, Fang & Livshits, Vladimir & Gershenfeld, Shari & Santos, Jorge & Ben-Akiva, Moshe, 2021. "Insights on data quality from a large-scale application of smartphone-based travel survey technology in the Phoenix metropolitan area, Arizona, USA," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 413-429.
    5. Hengfang Deng & Daniel P. Aldrich & Michael M. Danziger & Jianxi Gao & Nolan E. Phillips & Sean P. Cornelius & Qi Ryan Wang, 2021. "High-resolution human mobility data reveal race and wealth disparities in disaster evacuation patterns," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-8, December.
    6. Nima Kordzadeh & Maryam Ghasemaghaei, 2022. "Algorithmic bias: review, synthesis, and future research directions," European Journal of Information Systems, Taylor & Francis Journals, vol. 31(3), pages 388-409, May.
    7. repec:plo:pone00:0133630 is not listed on IDEAS
    8. Tong, Zhaomin & An, Rui & Zhang, Ziyi & Liu, Yaolin & Luo, Minghai, 2022. "Exploring non-linear and spatially non-stationary relationships between commuting burden and built environment correlates," Journal of Transport Geography, Elsevier, vol. 104(C).
    9. Johan Meppelink & Jens Van Langen & Arno Siebes & Marco Spruit, 2020. "Beware Thy Bias: Scaling Mobile Phone Data to Measure Traffic Intensities," Sustainability, MDPI, vol. 12(9), pages 1-19, May.
    10. Anastasios Noulas & Salvatore Scellato & Renaud Lambiotte & Massimiliano Pontil & Cecilia Mascolo, 2012. "A Tale of Many Cities: Universal Patterns in Human Urban Mobility," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-10, May.
    11. repec:plo:pone00:0131469 is not listed on IDEAS
    12. Marta C. González & César A. Hidalgo & Albert-László Barabási, 2009. "Understanding individual human mobility patterns," Nature, Nature, vol. 458(7235), pages 238-238, March.
    13. Krista Merry & Pete Bettinger, 2019. "Smartphone GPS accuracy study in an urban environment," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-19, July.
    14. Tang, Jinjun & Gao, Fan & Han, Chunyang & Cen, Xuekai & Li, Zhitao, 2021. "Uncovering the spatially heterogeneous effects of shared mobility on public transit and taxi," Journal of Transport Geography, Elsevier, vol. 95(C).
    15. Liang, Xiao & Zheng, Xudong & Lv, Weifeng & Zhu, Tongyu & Xu, Ke, 2012. "The scaling of human mobility by taxis is exponential," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2135-2144.
    16. D. Brockmann & L. Hufnagel & T. Geisel, 2006. "The scaling laws of human travel," Nature, Nature, vol. 439(7075), pages 462-465, January.
    17. Lu Zhong & Mamadou Diagne & Qi Wang & Jianxi Gao, 2022. "Vaccination and three non-pharmaceutical interventions determine the dynamics of COVID-19 in the US," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-12, December.
    18. Chen, Ruoyu & Zhang, Min & Zhou, Jiangping, 2023. "Jobs-housing relationships before and amid COVID-19: An excess-commuting approach," Journal of Transport Geography, Elsevier, vol. 106(C).
    19. Zhang, Yanji & Wang, Jiejing & Kan, Changcheng, 2022. "Temporal variation in activity-space-based segregation: A case study of Beijing using location-based service data," Journal of Transport Geography, Elsevier, vol. 98(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaogui Kang & Yu Liu & Diansheng Guo & Kun Qin, 2015. "A Generalized Radiation Model for Human Mobility: Spatial Scale, Searching Direction and Trip Constraint," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-11, November.
    2. Wang, Wenjun & Pan, Lin & Yuan, Ning & Zhang, Sen & Liu, Dong, 2015. "A comparative analysis of intra-city human mobility by taxi," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 134-147.
    3. Saberi, Meead & Ghamami, Mehrnaz & Gu, Yi & Shojaei, Mohammad Hossein (Sam) & Fishman, Elliot, 2018. "Understanding the impacts of a public transit disruption on bicycle sharing mobility patterns: A case of Tube strike in London," Journal of Transport Geography, Elsevier, vol. 66(C), pages 154-166.
    4. Tong Zhou & Xintao Liu & Zhen Qian & Haoxuan Chen & Fei Tao, 2019. "Dynamic Update and Monitoring of AOI Entrance via Spatiotemporal Clustering of Drop-Off Points," Sustainability, MDPI, vol. 11(23), pages 1-20, December.
    5. Meead Saberi & Taha H. Rashidi & Milad Ghasri & Kenneth Ewe, 2018. "A Complex Network Methodology for Travel Demand Model Evaluation and Validation," Networks and Spatial Economics, Springer, vol. 18(4), pages 1051-1073, December.
    6. Rezapour, Shabnam & Baghaian, Atefe & Naderi, Nazanin & Sarmiento, Juan P., 2023. "Infection transmission and prevention in metropolises with heterogeneous and dynamic populations," European Journal of Operational Research, Elsevier, vol. 304(1), pages 113-138.
    7. Xiang-Wen Wang & Xiao-Pu Han & Bing-Hong Wang, 2014. "Correlations and Scaling Laws in Human Mobility," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-10, January.
    8. Fan Yang & Zhenxing Yao & Fan Ding & Huachun Tan & Bin Ran, 2019. "Understanding Urban Mobility Pattern with Cellular Phone Data: A Case Study of Residents and Travelers in Nanjing," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
    9. Sanja Šćepanović & Igor Mishkovski & Pan Hui & Jukka K Nurminen & Antti Ylä-Jääski, 2015. "Mobile Phone Call Data as a Regional Socio-Economic Proxy Indicator," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-15, April.
    10. Maxime Lenormand & Miguel Picornell & Oliva G Cantú-Ros & Antònia Tugores & Thomas Louail & Ricardo Herranz & Marc Barthelemy & Enrique Frías-Martínez & José J Ramasco, 2014. "Cross-Checking Different Sources of Mobility Information," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-10, August.
    11. Huang, Feihu & Qiao, Shaojie & Peng, Jian & Guo, Bing & Xiong, Xi & Han, Nan, 2019. "A movement model for air passengers based on trip purpose," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 798-808.
    12. Alexandre Blake & Ashley Hazel & John Jakurama & Justy Matundu & Nita Bharti, 2023. "Disparities in mobile phone ownership reflect inequities in access to healthcare," PLOS Digital Health, Public Library of Science, vol. 2(7), pages 1-16, July.
    13. Cai, Hua & Zhan, Xiaowei & Zhu, Ji & Jia, Xiaoping & Chiu, Anthony S.F. & Xu, Ming, 2016. "Understanding taxi travel patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 590-597.
    14. Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2022. "Revealing mobility pattern of taxi movements with its travel trajectory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    15. He, Zhengbing, 2020. "Spatial-temporal fractal of urban agglomeration travel demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    16. Raja Jurdak, 2013. "The Impact of Cost and Network Topology on Urban Mobility: A Study of Public Bicycle Usage in 2 U.S. Cities," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-6, November.
    17. Nimrod Serok & Efrat Blumenfeld-Lieberthal, 2015. "A Simulation Model for Intra-Urban Movements," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-15, July.
    18. Oshan, Taylor M., 2020. "Potential and pitfalls of big transport data for spatial interaction models of urban mobility," OSF Preprints gwumt, Center for Open Science.
    19. Sheng Wei & Jinfu Yuan & Yanning Qiu & Xiali Luan & Shanrui Han & Wen Zhou & Chi Xu, 2017. "Exploring the potential of open big data from ticketing websites to characterize travel patterns within the Chinese high-speed rail system," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-13, June.
    20. Meead Saberi & Hani S. Mahmassani & Dirk Brockmann & Amir Hosseini, 2017. "A complex network perspective for characterizing urban travel demand patterns: graph theoretical analysis of large-scale origin–destination demand networks," Transportation, Springer, vol. 44(6), pages 1383-1402, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:123:y:2025:i:c:s096669232400317x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.