IDEAS home Printed from https://ideas.repec.org/a/plo/pdig00/0000270.html
   My bibliography  Save this article

Disparities in mobile phone ownership reflect inequities in access to healthcare

Author

Listed:
  • Alexandre Blake
  • Ashley Hazel
  • John Jakurama
  • Justy Matundu
  • Nita Bharti

Abstract

Human movement and population connectivity inform infectious disease management. Remote data, particularly mobile phone usage data, are frequently used to track mobility in outbreak response efforts without measuring representation in target populations. Using a detailed interview instrument, we measure population representation in phone ownership, mobility, and access to healthcare in a highly mobile population with low access to health care in Namibia, a middle-income country. We find that 1) phone ownership is both low and biased by gender, 2) phone ownership is correlated with differences in mobility and access to healthcare, and 3) reception is spatially unequal and scarce in non-urban areas. We demonstrate that mobile phone data do not represent the populations and locations that most need public health improvements. Finally, we show that relying on these data to inform public health decisions can be harmful with the potential to magnify health inequities rather than reducing them. To reduce health inequities, it is critical to integrate multiple data streams with measured, non-overlapping biases to ensure data representativeness for vulnerable populations.Author summary: Mobile phone data are increasingly used to inform public health efforts in both high and low-income settings due to convenience and growing phone penetration. However, digital inequities are ubiquitous and more pronounced in areas where mobile phone ownership is low or heterogeneous. The biases introduced by using mobile phone data to represent populations and their health care needs are rarely measured but have the potential to be detrimental to the most vulnerable segments of populations. We conducted detailed interviews measuring mobile phone ownership, mobility, and access to healthcare in mobile and remote populations in Namibia. We found that mobile phone owners represent a small proportion of the population that is highly mobile and has better access to healthcare. This is likely not unique. Due to the nature of their collection, mobile phone data often underrepresent vulnerable populations. This study demonstrates that uncritically using mobile phone data to inform public health decisions can perpetuate health inequities.

Suggested Citation

  • Alexandre Blake & Ashley Hazel & John Jakurama & Justy Matundu & Nita Bharti, 2023. "Disparities in mobile phone ownership reflect inequities in access to healthcare," PLOS Digital Health, Public Library of Science, vol. 2(7), pages 1-16, July.
  • Handle: RePEc:plo:pdig00:0000270
    DOI: 10.1371/journal.pdig.0000270
    as

    Download full text from publisher

    File URL: https://journals.plos.org/digitalhealth/article?id=10.1371/journal.pdig.0000270
    Download Restriction: no

    File URL: https://journals.plos.org/digitalhealth/article/file?id=10.1371/journal.pdig.0000270&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pdig.0000270?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Amy Wesolowski & Elisabeth zu Erbach-Schoenberg & Andrew J. Tatem & Christopher Lourenço & Cecile Viboud & Vivek Charu & Nathan Eagle & Kenth Engø-Monsen & Taimur Qureshi & Caroline O. Buckee & C. J. , 2017. "Multinational patterns of seasonal asymmetry in human movement influence infectious disease dynamics," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    2. Nagler, Thomas, 2018. "A generic approach to nonparametric function estimation with mixed data," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 326-330.
    3. Valerie A Paz-Soldan & Robert C Reiner Jr & Amy C Morrison & Steven T Stoddard & Uriel Kitron & Thomas W Scott & John P Elder & Eric S Halsey & Tadeusz J Kochel & Helvio Astete & Gonzalo M Vazquez-Pro, 2014. "Strengths and Weaknesses of Global Positioning System (GPS) Data-Loggers and Semi-structured Interviews for Capturing Fine-scale Human Mobility: Findings from Iquitos, Peru," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 8(6), pages 1-11, June.
    4. Gabriel Pestre & Emmanuel Letouzé & Emilio Zagheni, 2020. "The ABCDE of Big Data: Assessing Biases in Call-Detail Records for Development Estimates," The World Bank Economic Review, World Bank, vol. 34(Supplemen), pages 89-97.
    5. Johan Meppelink & Jens Van Langen & Arno Siebes & Marco Spruit, 2020. "Beware Thy Bias: Scaling Mobile Phone Data to Measure Traffic Intensities," Sustainability, MDPI, vol. 12(9), pages 1-19, May.
    6. Valerie C. Bradley & Shiro Kuriwaki & Michael Isakov & Dino Sejdinovic & Xiao-Li Meng & Seth Flaxman, 2021. "Unrepresentative big surveys significantly overestimated US vaccine uptake," Nature, Nature, vol. 600(7890), pages 695-700, December.
    7. Marta C. González & César A. Hidalgo & Albert-László Barabási, 2009. "Understanding individual human mobility patterns," Nature, Nature, vol. 458(7235), pages 238-238, March.
    8. D. Brockmann & L. Hufnagel & T. Geisel, 2006. "The scaling laws of human travel," Nature, Nature, vol. 439(7075), pages 462-465, January.
    9. Eugenio Valdano & Justin T. Okano & Vittoria Colizza & Honore K. Mitonga & Sally Blower, 2021. "Using mobile phone data to reveal risk flow networks underlying the HIV epidemic in Namibia," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maxime Lenormand & Miguel Picornell & Oliva G Cantú-Ros & Antònia Tugores & Thomas Louail & Ricardo Herranz & Marc Barthelemy & Enrique Frías-Martínez & José J Ramasco, 2014. "Cross-Checking Different Sources of Mobility Information," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-10, August.
    2. Huang, Feihu & Qiao, Shaojie & Peng, Jian & Guo, Bing & Xiong, Xi & Han, Nan, 2019. "A movement model for air passengers based on trip purpose," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 798-808.
    3. Shanshan Wan & Zhuo Chen & Cheng Lyu & Ruofan Li & Yuntao Yue & Ying Liu, 2022. "Research on disaster information dissemination based on social sensor networks," International Journal of Distributed Sensor Networks, , vol. 18(3), pages 15501329221, March.
    4. Chaogui Kang & Yu Liu & Diansheng Guo & Kun Qin, 2015. "A Generalized Radiation Model for Human Mobility: Spatial Scale, Searching Direction and Trip Constraint," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-11, November.
    5. Li, Ze-Tao & Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2023. "Exploring the topological characteristics of urban trip networks based on taxi trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    6. Cai, Hua & Zhan, Xiaowei & Zhu, Ji & Jia, Xiaoping & Chiu, Anthony S.F. & Xu, Ming, 2016. "Understanding taxi travel patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 590-597.
    7. repec:osf:osfxxx:gwumt_v1 is not listed on IDEAS
    8. Toru Nakamura & Toru Takumi & Atsuko Takano & Fumiyuki Hatanaka & Yoshiharu Yamamoto, 2013. "Characterization and Modeling of Intermittent Locomotor Dynamics in Clock Gene-Deficient Mice," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-8, March.
    9. Chen, Roger B., 2018. "Models of count with endogenous choices," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 862-875.
    10. Barmak, D.H. & Dorso, C.O. & Otero, M., 2016. "Modelling dengue epidemic spreading with human mobility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 129-140.
    11. Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2022. "Revealing mobility pattern of taxi movements with its travel trajectory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    12. Christensen, Claire & Albert, István & Grenfell, Bryan & Albert, Réka, 2010. "Disease dynamics in a dynamic social network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(13), pages 2663-2674.
    13. Jessica E. Steele & Carla Pezzulo & Maximilian Albert & Christopher J. Brooks & Elisabeth zu Erbach-Schoenberg & Siobhán B. O’Connor & Pål R. Sundsøy & Kenth Engø-Monsen & Kristine Nilsen & Bonita Gra, 2021. "Mobility and phone call behavior explain patterns in poverty at high-resolution across multiple settings," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-12, December.
    14. Dong, Bing & Liu, Yapan & Fontenot, Hannah & Ouf, Mohamed & Osman, Mohamed & Chong, Adrian & Qin, Shuxu & Salim, Flora & Xue, Hao & Yan, Da & Jin, Yuan & Han, Mengjie & Zhang, Xingxing & Azar, Elie & , 2021. "Occupant behavior modeling methods for resilient building design, operation and policy at urban scale: A review," Applied Energy, Elsevier, vol. 293(C).
    15. Li, Jun & Fu, Siyao & He, Haibo & Jia, Hongfei & Li, Yanzhong & Guo, Yi, 2015. "Simulating large-scale pedestrian movement using CA and event driven model: Methodology and case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 304-321.
    16. Qianqian Liu & Qun Wang, 2017. "A comparative study on uncooperative search models in survivor search and rescue," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(2), pages 843-857, November.
    17. Li, Yan & Ye, Hang & Zhang, Hong, 2016. "Evolution of cooperation driven by social-welfare-based migration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 48-56.
    18. Tini Garske & Hongjie Yu & Zhibin Peng & Min Ye & Hang Zhou & Xiaowen Cheng & Jiabing Wu & Neil Ferguson, 2011. "Travel Patterns in China," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-9, February.
    19. Saberi, Meead & Ghamami, Mehrnaz & Gu, Yi & Shojaei, Mohammad Hossein (Sam) & Fishman, Elliot, 2018. "Understanding the impacts of a public transit disruption on bicycle sharing mobility patterns: A case of Tube strike in London," Journal of Transport Geography, Elsevier, vol. 66(C), pages 154-166.
    20. Paul Peeters & Martin Landré, 2011. "The Emerging Global Tourism Geography—An Environmental Sustainability Perspective," Sustainability, MDPI, vol. 4(1), pages 1-30, December.
    21. Zhang, Xiaohu, 2021. "Beyond expected regularity of aggregate urban mobility: A case study of ridesourcing service," Journal of Transport Geography, Elsevier, vol. 95(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pdig00:0000270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: digitalhealth (email available below). General contact details of provider: https://journals.plos.org/digitalhealth .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.