IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v93y2008i5p675-686.html
   My bibliography  Save this article

Expert judgement combination using moment methods

Author

Listed:
  • Wisse, Bram
  • Bedford, Tim
  • Quigley, John

Abstract

Moment methods have been employed in decision analysis, partly to avoid the computational burden that decision models involving continuous probability distributions can suffer from. In the Bayes linear (BL) methodology prior judgements about uncertain quantities are specified using expectation (rather than probability) as the fundamental notion. BL provides a strong foundation for moment methods, rooted in work of De Finetti and Goldstein. The main objective of this paper is to discuss in what way expert assessments of moments can be combined, in a non-Bayesian way, to construct a prior assessment. We show that the linear pool can be justified in an analogous but technically different way to linear pools for probability assessments, and that this linear pool has a very convenient property: a linear pool of experts’ assessments of moments is coherent if each of the experts has given coherent assessments. To determine the weights of the linear pool we give a method of performance based weighting analogous to Cooke's classical model and explore its properties. Finally, we compare its performance with the classical model on data gathered in applications of the classical model.

Suggested Citation

  • Wisse, Bram & Bedford, Tim & Quigley, John, 2008. "Expert judgement combination using moment methods," Reliability Engineering and System Safety, Elsevier, vol. 93(5), pages 675-686.
  • Handle: RePEc:eee:reensy:v:93:y:2008:i:5:p:675-686
    DOI: 10.1016/j.ress.2007.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832007000956
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2007.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Donald L. Keefer & Samuel E. Bodily, 1983. "Three-Point Approximations for Continuous Random Variables," Management Science, INFORMS, vol. 29(5), pages 595-609, May.
    2. James E. Smith, 1993. "Moment Methods for Decision Analysis," Management Science, INFORMS, vol. 39(3), pages 340-358, March.
    3. Garthwaite, Paul H. & Kadane, Joseph B. & O'Hagan, Anthony, 2005. "Statistical Methods for Eliciting Probability Distributions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 680-701, June.
    4. James E. Smith & Detlof von Winterfeldt, 2004. "Anniversary Article: Decision Analysis in Management Science," Management Science, INFORMS, vol. 50(5), pages 561-574, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. El-Ladan, S.B. & Turan, O., 2012. "Human reliability analysis—Taxonomy and praxes of human entropy boundary conditions for marine and offshore applications," Reliability Engineering and System Safety, Elsevier, vol. 98(1), pages 43-54.
    2. Robert Stewart & Marie Urban & Samantha Duchscherer & Jason Kaufman & April Morton & Gautam Thakur & Jesse Piburn & Jessica Moehl, 2016. "A Bayesian machine learning model for estimating building occupancy from open source data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1929-1956, April.
    3. Manuele Leonelli & James Smith, 2015. "Bayesian decision support for complex systems with many distributed experts," Annals of Operations Research, Springer, vol. 235(1), pages 517-542, December.
    4. Irina Vinogradova-Zinkevič, 2021. "Application of Bayesian Approach to Reduce the Uncertainty in Expert Judgments by Using a Posteriori Mean Function," Mathematics, MDPI, vol. 9(19), pages 1-23, October.
    5. Bolger, Donnacha & Houlding, Brett, 2017. "Deriving the probability of a linear opinion pooling method being superior to a set of alternatives," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 41-49.
    6. Erin Baker & Olaitan Olaleye, 2013. "Combining Experts: Decomposition and Aggregation Order," Risk Analysis, John Wiley & Sons, vol. 33(6), pages 1116-1127, June.
    7. Donnacha Bolger & Brett Houlding, 2016. "Reliability updating in linear opinion pooling for multiple decision makers," Journal of Risk and Reliability, , vol. 230(3), pages 309-322, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Werner, Christoph & Bedford, Tim & Cooke, Roger M. & Hanea, Anca M. & Morales-Nápoles, Oswaldo, 2017. "Expert judgement for dependence in probabilistic modelling: A systematic literature review and future research directions," European Journal of Operational Research, Elsevier, vol. 258(3), pages 801-819.
    2. Thomas W. Keelin & Bradford W. Powley, 2011. "Quantile-Parameterized Distributions," Decision Analysis, INFORMS, vol. 8(3), pages 206-219, September.
    3. Tanaka, Ken'ichiro & Toda, Alexis Akira, 2015. "Discretizing Distributions with Exact Moments: Error Estimate and Convergence Analysis," University of California at San Diego, Economics Working Paper Series qt7g23r5kh, Department of Economics, UC San Diego.
    4. Robert K. Hammond & J. Eric Bickel, 2013. "Reexamining Discrete Approximations to Continuous Distributions," Decision Analysis, INFORMS, vol. 10(1), pages 6-25, March.
    5. Ravi Kashyap, 2016. "The Perfect Marriage and Much More: Combining Dimension Reduction, Distance Measures and Covariance," Papers 1603.09060, arXiv.org, revised Jul 2019.
    6. Durbach, Ian N. & Stewart, Theodor J., 2012. "A comparison of simplified value function approaches for treating uncertainty in multi-criteria decision analysis," Omega, Elsevier, vol. 40(4), pages 456-464.
    7. Johan René van Dorp & Salvador Cruz Rambaud & José García Pérez & Rafael Herrerías Pleguezuelo, 2007. "An Elicitation Procedure for the Generalized Trapezoidal Distribution with a Uniform Central Stage," Decision Analysis, INFORMS, vol. 4(3), pages 156-166, September.
    8. Kashyap, Ravi, 2019. "The perfect marriage and much more: Combining dimension reduction, distance measures and covariance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    9. Konstantin Pavlikov & Stan Uryasev, 2018. "CVaR distance between univariate probability distributions and approximation problems," Annals of Operations Research, Springer, vol. 262(1), pages 67-88, March.
    10. Durbach, Ian N. & Stewart, Theodor J., 2011. "An experimental study of the effect of uncertainty representation on decision making," European Journal of Operational Research, Elsevier, vol. 214(2), pages 380-392, October.
    11. Soltani, Mohamad & Samorani, Michele & Kolfal, Bora, 2019. "Appointment scheduling with multiple providers and stochastic service times," European Journal of Operational Research, Elsevier, vol. 277(2), pages 667-683.
    12. Durbach, Ian N. & Stewart, Theodor J., 2012. "Modeling uncertainty in multi-criteria decision analysis," European Journal of Operational Research, Elsevier, vol. 223(1), pages 1-14.
    13. Ignacio Rios & Andres Weintraub & Roger J.-B. Wets, 2016. "Building a stochastic programming model from scratch: a harvesting management example," Quantitative Finance, Taylor & Francis Journals, vol. 16(2), pages 189-199, February.
    14. Yijing Li & Prakash P. Shenoy, 2012. "A Framework for Solving Hybrid Influence Diagrams Containing Deterministic Conditional Distributions," Decision Analysis, INFORMS, vol. 9(1), pages 55-75, March.
    15. Woodruff, Joshua & Dimitrov, Nedialko B., 2018. "Optimal discretization for decision analysis," Operations Research Perspectives, Elsevier, vol. 5(C), pages 288-305.
    16. Ali E. Abbas & David V. Budescu & Hsiu-Ting Yu & Ryan Haggerty, 2008. "A Comparison of Two Probability Encoding Methods: Fixed Probability vs. Fixed Variable Values," Decision Analysis, INFORMS, vol. 5(4), pages 190-202, December.
    17. Kjetil Høyland & Stein W. Wallace, 2001. "Generating Scenario Trees for Multistage Decision Problems," Management Science, INFORMS, vol. 47(2), pages 295-307, February.
    18. Anil Gaba & Dana G. Popescu & Zhi Chen, 2019. "Assessing Uncertainty from Point Forecasts," Management Science, INFORMS, vol. 65(1), pages 90-106, January.
    19. Jing Ai & Patrick L. Brockett & Tianyang Wang, 2017. "Optimal Enterprise Risk Management and Decision Making With Shared and Dependent Risks," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(4), pages 1127-1169, December.
    20. Luis V. Montiel & J. Eric Bickel, 2012. "A Simulation-Based Approach to Decision Making with Partial Information," Decision Analysis, INFORMS, vol. 9(4), pages 329-347, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:93:y:2008:i:5:p:675-686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.