IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v38y2011i6p871-887.html
   My bibliography  Save this article

Simulating the impacts of household travel on greenhouse gas emissions, urban air quality, and population exposure

Author

Listed:
  • Marianne Hatzopoulou
  • Jiang Hao
  • Eric Miller

Abstract

No abstract is available for this item.

Suggested Citation

  • Marianne Hatzopoulou & Jiang Hao & Eric Miller, 2011. "Simulating the impacts of household travel on greenhouse gas emissions, urban air quality, and population exposure," Transportation, Springer, vol. 38(6), pages 871-887, November.
  • Handle: RePEc:kap:transp:v:38:y:2011:i:6:p:871-887
    DOI: 10.1007/s11116-011-9362-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11116-011-9362-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-011-9362-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yoram Shiftan & John Suhrbier, 2002. "The analysis of travel and emission impacts of travel demand management strategies using activity-based models," Transportation, Springer, vol. 29(2), pages 145-168, May.
    2. Roorda, Matthew J. & Miller, Eric J. & Habib, Khandker M.N., 2008. "Validation of TASHA: A 24-h activity scheduling microsimulation model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(2), pages 360-375, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Hashem Askariyeh & Suriya Vallamsundar & Josias Zietsman & Tara Ramani, 2019. "Assessment of Traffic-Related Air Pollution: Case Study of Pregnant Women in South Texas," IJERPH, MDPI, vol. 16(13), pages 1-19, July.
    2. João Soares & Bruno Canizes & Cristina Lobo & Zita Vale & Hugo Morais, 2012. "Electric Vehicle Scenario Simulator Tool for Smart Grid Operators," Energies, MDPI, vol. 5(6), pages 1-19, June.
    3. Moshe Givoni & Eda Beyazit & Yoram Shiftan, 2016. "The use of state-of-the-art transport models by policymakers – beauty in simplicity?," Planning Theory & Practice, Taylor & Francis Journals, vol. 17(3), pages 385-404, July.
    4. Seo, Youngguk & Kim, Seong-Min, 2013. "Estimation of greenhouse gas emissions from road traffic: A case study in Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 777-787.
    5. Qingxu Huang & Dawn C Parker & Tatiana Filatova & Shipeng Sun, 2014. "A Review of Urban Residential Choice Models Using Agent-Based Modeling," Environment and Planning B, , vol. 41(4), pages 661-689, August.
    6. Hualong Yang & Xuefei Ma & Yuwei Xing, 2017. "Trends in CO 2 Emissions from China-Oriented International Marine Transportation Activities and Policy Implications," Energies, MDPI, vol. 10(7), pages 1-17, July.
    7. Yu Han & Changjie Chen & Zhong-Ren Peng & Pallab Mozumder, 2022. "Evaluating impacts of coastal flooding on the transportation system using an activity-based travel demand model: a case study in Miami-Dade County, FL," Transportation, Springer, vol. 49(1), pages 163-184, February.
    8. Heinrichs, Heidi & Jochem, Patrick & Fichtner, Wolf, 2014. "Including road transport in the EU ETS (European Emissions Trading System): A model-based analysis of the German electricity and transport sector," Energy, Elsevier, vol. 69(C), pages 708-720.
    9. Yang, Yuan & Wang, Can & Liu, Wenling & Zhou, Peng, 2017. "Microsimulation of low carbon urban transport policies in Beijing," Energy Policy, Elsevier, vol. 107(C), pages 561-572.
    10. Dawei Li & Cheng Li & Tomio Miwa & Takayuki Morikawa, 2019. "An Exploration of Factors Affecting Drivers’ Daily Fuel Consumption Efficiencies Considering Multi-Level Random Effects," Sustainability, MDPI, vol. 11(2), pages 1-13, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yoram Shiftan & Moshe Ben-Akiva, 2011. "A practical policy-sensitive, activity-based, travel-demand model," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 47(3), pages 517-541, December.
    2. Yasmin, Farhana & Morency, Catherine & Roorda, Matthew J., 2015. "Assessment of spatial transferability of an activity-based model, TASHA," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 200-213.
    3. Steven Farber & Tijs Neutens & Juan-Antonio Carrasco & Carolina Rojas, 2014. "Social Interaction Potential and the Spatial Distribution of Face-to-Face Social Interactions," Environment and Planning B, , vol. 41(6), pages 960-976, December.
    4. Ali Najmi & Taha H. Rashidi & Eric J. Miller, 2019. "A novel approach for systematically calibrating transport planning model systems," Transportation, Springer, vol. 46(5), pages 1915-1950, October.
    5. Linda Nijland & Theo Arentze & Harry Timmermans, 2013. "Representing and estimating interactions between activities in a need-based model of activity generation," Transportation, Springer, vol. 40(2), pages 413-430, February.
    6. Marlies Vanhulsel & Carolien Beckx & Davy Janssens & Koen Vanhoof & Geert Wets, 2011. "Measuring dissimilarity of geographically dispersed space–time paths," Transportation, Springer, vol. 38(1), pages 65-79, January.
    7. Maggi,Elena & Vallino,Elena, 2017. "An Agent-Based Simulation of Urban Passenger Mobility and Related Policies. The Case Study of an Italian Small City," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201708, University of Turin.
    8. Jinbao Zhao & Wei Deng & Yan Song & Yueran Zhu, 2014. "Analysis of Metro ridership at station level and station-to-station level in Nanjing: an approach based on direct demand models," Transportation, Springer, vol. 41(1), pages 133-155, January.
    9. Rachid Belaroussi & Younes Delhoum, 2024. "Forecasting Daily Activity Plans of a Synthetic Population in an Upcoming District," Forecasting, MDPI, vol. 6(2), pages 1-26, May.
    10. Vo, Khoa D. & Lam, William H.K. & Chen, Anthony & Shao, Hu, 2020. "A household optimum utility approach for modeling joint activity-travel choices in congested road networks," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 93-125.
    11. Joshua Wang & Eric J Miller, 2014. "A Prism-Based and Gap-Based Approach to Shopping Location Choice," Environment and Planning B, , vol. 41(6), pages 977-1005, December.
    12. Meead Saberi & Taha H. Rashidi & Milad Ghasri & Kenneth Ewe, 2018. "A Complex Network Methodology for Travel Demand Model Evaluation and Validation," Networks and Spatial Economics, Springer, vol. 18(4), pages 1051-1073, December.
    13. Bobin Wang & Chunfu Shao & Xun Ji, 2017. "Influencing Mechanism Analysis of Holiday Activity–Travel Patterns on Transportation Energy Consumption and Emissions in China," Energies, MDPI, vol. 10(7), pages 1-20, July.
    14. Daniel Shefer, 2014. "Sustainable Transportation and Urban Development," ERSA conference papers ersa14p306, European Regional Science Association.
    15. Mostafa, Toka S. & Roorda, Matthew J., 2016. "Modelling Freight Outsourcing Decisions," 57th Transportation Research Forum (51st CTRF) Joint Conference, Toronto, Ontario, May 1-4, 2016 319306, Transportation Research Forum.
    16. Ko, Joonho & Kim, Daejin, 2017. "Employer-based travel demand management program: Employer’s choice and effectiveness," Transport Policy, Elsevier, vol. 59(C), pages 1-9.
    17. Kirill Mueller & Kay W. Axhausen, 2011. "Hierarchical IPF: Generating a synthetic population for Switzerland," ERSA conference papers ersa11p305, European Regional Science Association.
    18. Ken Hidaka & Toshiyuki Yamamoto, 2021. "Activity Scheduling Behavior of the Visitors to an Outdoor Recreational Facility Using GPS Data," Sustainability, MDPI, vol. 13(9), pages 1-22, April.
    19. Guo, Liya & Huang, Shan & Sadek, Adel W., 2013. "A novel agent-based transportation model of a university campus with application to quantifying the environmental cost of parking search," Transportation Research Part A: Policy and Practice, Elsevier, vol. 50(C), pages 86-104.
    20. Wang, Kaili & Hossain, Sanjana & Nurul Habib, Khandker, 2022. "What happens when post-secondary programmes go virtual for COVID-19? Effects of forced telecommuting on travel demand of post-secondary students during the pandemic," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 62-85.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:38:y:2011:i:6:p:871-887. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.