IDEAS home Printed from https://ideas.repec.org/a/kap/theord/v84y2018i2d10.1007_s11238-017-9647-3.html
   My bibliography  Save this article

D-efficient or deficient? A robustness analysis of stated choice experimental designs

Author

Listed:
  • Joan L. Walker

    (University of California, Berkeley)

  • Yanqiao Wang

    (University of California, Berkeley)

  • Mikkel Thorhauge

    (Technical University of Denmark)

  • Moshe Ben-Akiva

    (Massachusetts Institute of Technology)

Abstract

This paper is motivated by the increasing popularity of efficient designs for stated choice experiments. The objective in efficient designs is to create a stated choice experiment that minimizes the standard errors of the estimated parameters. In order to do so, such designs require specifying prior values for the parameters to be estimated. While there is significant literature demonstrating the efficiency improvements (and cost savings) of employing efficient designs, the bulk of the literature tests conditions where the priors used to generate the efficient design are assumed to be accurate. However, there is substantially less literature that compares how different design types perform under varying degree of error of the prior. The literature that does exist assumes small fractions are used (e.g., under 20 unique choice tasks generated), which is in contrast to computer-aided surveys that readily allow for large fractions. Further, the results in the literature are abstract in that there is no reference point (i.e., meaningful units) to provide clear insight on the magnitude of any issue. Our objective is to analyze the robustness of different designs within a typical stated choice experiment context of a trade-off between price and quality. We use as an example transportation mode choice, where the key parameter to estimate is the value of time (VOT). Within this context, we test many designs to examine how robust efficient designs are against a misspecification of the prior parameters. The simple mode choice setting allows for insightful visualizations of the designs themselves and also an interpretable reference point (VOT) for the range in which each design is robust. Not surprisingly, the D-efficient design is most efficient in the region where the true population VOT is near the prior used to generate the design: the prior is $20/h and the efficient range is $10–$30/h. However, the D-efficient design quickly becomes the most inefficient outside of this range (under $5/h and above $40/h), and the estimation significantly degrades above $50/h. The orthogonal and random designs are robust for a much larger range of VOT. The robustness of Bayesian efficient designs varies depending on the variance that the prior assumes. Implementing two-stage designs that first use a small sample to estimate priors are also not robust relative to uninformative designs. Arguably, the random design (which is the easiest to generate) performs as well as any design, and it (as well as any design) will perform even better if data cleaning is done to remove choice tasks where one alternative dominates the other.

Suggested Citation

  • Joan L. Walker & Yanqiao Wang & Mikkel Thorhauge & Moshe Ben-Akiva, 2018. "D-efficient or deficient? A robustness analysis of stated choice experimental designs," Theory and Decision, Springer, vol. 84(2), pages 215-238, March.
  • Handle: RePEc:kap:theord:v:84:y:2018:i:2:d:10.1007_s11238-017-9647-3
    DOI: 10.1007/s11238-017-9647-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11238-017-9647-3
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11238-017-9647-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bliemer, Michiel C.J. & Collins, Andrew T., 2016. "On determining priors for the generation of efficient stated choice experimental designs," Journal of choice modelling, Elsevier, vol. 21(C), pages 10-14.
    2. Hensher, David A., 1982. "Functional measurement, individual preference and discrete-choice modelling: Theory and application," Journal of Economic Psychology, Elsevier, vol. 2(4), pages 323-335, December.
    3. Bliemer, Michiel C.J. & Rose, John M. & Hensher, David A., 2009. "Efficient stated choice experiments for estimating nested logit models," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 19-35, January.
    4. Adamowicz W. & Louviere J. & Williams M., 1994. "Combining Revealed and Stated Preference Methods for Valuing Environmental Amenities," Journal of Environmental Economics and Management, Elsevier, vol. 26(3), pages 271-292, May.
    5. Bliemer, Michiel C.J. & Rose, John M., 2010. "Construction of experimental designs for mixed logit models allowing for correlation across choice observations," Transportation Research Part B: Methodological, Elsevier, vol. 44(6), pages 720-734, July.
    6. Bliemer, Michiel C.J. & Rose, John M. & Chorus, Caspar G., 2017. "Detecting dominance in stated choice data and accounting for dominance-based scale differences in logit models," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 83-104.
    7. Rose, John M. & Bliemer, Michiel C.J. & Hensher, David A. & Collins, Andrew T., 2008. "Designing efficient stated choice experiments in the presence of reference alternatives," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 395-406, May.
    8. Zsolt Sándor & Michel Wedel, 2002. "Profile Construction in Experimental Choice Designs for Mixed Logit Models," Marketing Science, INFORMS, vol. 21(4), pages 455-475, February.
    9. John Rose & Michiel Bliemer, 2013. "Sample size requirements for stated choice experiments," Transportation, Springer, vol. 40(5), pages 1021-1041, September.
    10. Bliemer, Michiel C.J. & Rose, John M., 2011. "Experimental design influences on stated choice outputs: An empirical study in air travel choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(1), pages 63-79, January.
    11. Small, Kenneth A, 1982. "The Scheduling of Consumer Activities: Work Trips," American Economic Review, American Economic Association, vol. 72(3), pages 467-479, June.
    12. Louviere, Jordan J & Hensher, David A, 1983. "Using Discrete Choice Models with Experimental Design Data to Forecast Consumer Demand for a Unique Cultural Event," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 10(3), pages 348-361, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haghani, Milad & Sarvi, Majid, 2018. "Hypothetical bias and decision-rule effect in modelling discrete directional choices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 361-388.
    2. van Cranenburgh, Sander & Rose, John M. & Chorus, Caspar G., 2018. "On the robustness of efficient experimental designs towards the underlying decision rule," Transportation Research Part A: Policy and Practice, Elsevier, vol. 109(C), pages 50-64.
    3. Kessels, Roselinde, 2016. "Homogeneous versus heterogeneous designs for stated choice experiments: Ain't homogeneous designs all bad?," Journal of choice modelling, Elsevier, vol. 21(C), pages 2-9.
    4. Danaf, Mazen & Atasoy, Bilge & de Azevedo, Carlos Lima & Ding-Mastera, Jing & Abou-Zeid, Maya & Cox, Nathaniel & Zhao, Fang & Ben-Akiva, Moshe, 2019. "Context-aware stated preferences with smartphone-based travel surveys," Journal of choice modelling, Elsevier, vol. 31(C), pages 35-50.
    5. Richard Yao & Riccardo Scarpa & John Rose & James Turner, 2015. "Experimental Design Criteria and Their Behavioural Efficiency: An Evaluation in the Field," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(3), pages 433-455, November.
    6. John Rose & Michiel Bliemer, 2013. "Sample size requirements for stated choice experiments," Transportation, Springer, vol. 40(5), pages 1021-1041, September.
    7. Bliemer, Michiel C.J. & Rose, John M., 2011. "Experimental design influences on stated choice outputs: An empirical study in air travel choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(1), pages 63-79, January.
    8. van Cranenburgh, Sander & Bliemer, Michiel C.J., 2019. "Information theoretic-based sampling of observations," Journal of choice modelling, Elsevier, vol. 31(C), pages 181-197.
    9. Bliemer, Michiel C.J. & Rose, John M. & Chorus, Caspar G., 2017. "Detecting dominance in stated choice data and accounting for dominance-based scale differences in logit models," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 83-104.
    10. van Cranenburgh, Sander & Collins, Andrew T., 2019. "New software tools for creating stated choice experimental designs efficient for regret minimisation and utility maximisation decision rules," Journal of choice modelling, Elsevier, vol. 31(C), pages 104-123.
    11. Palhazi Cuervo, Daniel & Kessels, Roselinde & Goos, Peter & Sörensen, Kenneth, 2016. "An integrated algorithm for the optimal design of stated choice experiments with partial profiles," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 648-669.
    12. Bliemer, Michiel C.J. & Rose, John M., 2010. "Construction of experimental designs for mixed logit models allowing for correlation across choice observations," Transportation Research Part B: Methodological, Elsevier, vol. 44(6), pages 720-734, July.
    13. Sanko, Nobuhiro & Yamamoto, Toshiyuki, 2013. "Estimation efficiency of RP/SP models considering SP design and error structures," Journal of choice modelling, Elsevier, vol. 6(C), pages 60-73.
    14. Greiner, Romy & Bliemer, Michiel & Ballweg, Julie, 2014. "Design considerations of a choice experiment to estimate likely participation by north Australian pastoralists in contractual biodiversity conservation," Journal of choice modelling, Elsevier, vol. 10(C), pages 34-45.
    15. Robert J. Johnston & Kevin J. Boyle & Wiktor (Vic) Adamowicz & Jeff Bennett & Roy Brouwer & Trudy Ann Cameron & W. Michael Hanemann & Nick Hanley & Mandy Ryan & Riccardo Scarpa & Roger Tourangeau & Ch, 2017. "Contemporary Guidance for Stated Preference Studies," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(2), pages 319-405.
    16. Basu, Debasis & Hunt, John Douglas, 2012. "Valuing of attributes influencing the attractiveness of suburban train service in Mumbai city: A stated preference approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(9), pages 1465-1476.
    17. Kerr, Geoffrey N. & Sharp, Basil M.H., 2010. "Choice experiment adaptive design benefits: a case study," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(4), pages 1-14.
    18. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    19. de Bekker-Grob, E.W. & Donkers, B. & Bliemer, M.C.J. & Veldwijk, J. & Swait, J.D., 2020. "Can healthcare choice be predicted using stated preference data?," Social Science & Medicine, Elsevier, vol. 246(C).
    20. Valeri, Eva & Danielis, Romeo, 2015. "Simulating the market penetration of cars with alternative fuelpowertrain technologies in Italy," Transport Policy, Elsevier, vol. 37(C), pages 44-56.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:theord:v:84:y:2018:i:2:d:10.1007_s11238-017-9647-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.