IDEAS home Printed from https://ideas.repec.org/a/kap/jproda/v40y2013i2p227-237.html
   My bibliography  Save this article

Estimation of the threshold stochastic frontier model in the presence of an endogenous sample split variable

Author

Listed:
  • Hung-pin Lai

Abstract

Heterogeneity among firms has been an important issue in studying firms’ technical efficiencies. If firms do not randomly fall into different groups with different technologies but by self-selection, statistically it implies the data are subject to the sample selection bias. In this paper, we generalize the stochastic frontier (SF) model to accommodate heterogeneous technologies among firms by considering the threshold SF model with an endogenous threshold variable. We discuss the econometric techniques appropriate for the threshold SF model with panel data. To determine the optimal number of regimes, we use modified the model selection criteria of Gonzalo and Pitarakis (J Econom 110(2):319–352, 2002 ) and investigate their finite sample performance by some Monte Carlo experiments. Finally, we also demonstrate our approach by an empirical example. Copyright Springer Science+Business Media New York 2013

Suggested Citation

  • Hung-pin Lai, 2013. "Estimation of the threshold stochastic frontier model in the presence of an endogenous sample split variable," Journal of Productivity Analysis, Springer, vol. 40(2), pages 227-237, October.
  • Handle: RePEc:kap:jproda:v:40:y:2013:i:2:p:227-237
    DOI: 10.1007/s11123-012-0319-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11123-012-0319-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11123-012-0319-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William Greene, 2010. "A stochastic frontier model with correction for sample selection," Journal of Productivity Analysis, Springer, vol. 34(1), pages 15-24, August.
    2. Kourtellos, Andros & Stengos, Thanasis & Tan, Chih Ming, 2016. "Structural Threshold Regression," Econometric Theory, Cambridge University Press, vol. 32(4), pages 827-860, August.
    3. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    4. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
    5. Hansen, Bruce E., 1999. "Threshold effects in non-dynamic panels: Estimation, testing, and inference," Journal of Econometrics, Elsevier, vol. 93(2), pages 345-368, December.
    6. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    7. Pitarakis Jean-Yves, 2006. "Model Selection Uncertainty and Detection of Threshold Effects," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(1), pages 1-30, March.
    8. Pitt, Mark M. & Lee, Lung-Fei, 1981. "The measurement and sources of technical inefficiency in the Indonesian weaving industry," Journal of Development Economics, Elsevier, vol. 9(1), pages 43-64, August.
    9. Schmidt, Peter & Sickles, Robin C, 1984. "Production Frontiers and Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 367-374, October.
    10. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    11. Yélou, Clément & Larue, Bruno & Tran, Kien C., 2010. "Threshold effects in panel data stochastic frontier models of dairy production in Canada," Economic Modelling, Elsevier, vol. 27(3), pages 641-647, May.
    12. Luis Orea & Subal C. Kumbhakar, 2004. "Efficiency measurement using a latent class stochastic frontier model," Empirical Economics, Springer, vol. 29(1), pages 169-183, January.
    13. Efthymios G. Tsionas & Subal C. Kumbhakar, 2004. "Markov switching stochastic frontier model," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 398-425, December.
    14. Mei-Hui Wang & Tai-Hsin Huang, 2009. "Threshold effects of financial status on the cost frontiers of financial institutions in nondynamic panels," Applied Economics, Taylor & Francis Journals, vol. 41(26), pages 3389-3401.
    15. Bruce E. Hansen, 2000. "Sample Splitting and Threshold Estimation," Econometrica, Econometric Society, vol. 68(3), pages 575-604, May.
    16. Bai, Jushan, 1997. "Estimating Multiple Breaks One at a Time," Econometric Theory, Cambridge University Press, vol. 13(3), pages 315-352, June.
    17. Antonio Alvarez & Julio del Corral, 2010. "Identifying different technologies using a latent class model: extensive versus intensive dairy farms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 37(2), pages 231-250, June.
    18. Subal Kumbhakar & Efthymios Tsionas & Timo Sipiläinen, 2009. "Joint estimation of technology choice and technical efficiency: an application to organic and conventional dairy farming," Journal of Productivity Analysis, Springer, vol. 31(3), pages 151-161, June.
    19. Kumbhakar, Subal C. & Park, Byeong U. & Simar, Leopold & Tsionas, Efthymios G., 2007. "Nonparametric stochastic frontiers: A local maximum likelihood approach," Journal of Econometrics, Elsevier, vol. 137(1), pages 1-27, March.
    20. Gonzalo, Jesus & Pitarakis, Jean-Yves, 2002. "Estimation and model selection based inference in single and multiple threshold models," Journal of Econometrics, Elsevier, vol. 110(2), pages 319-352, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Jun & King, Tao-Hsien Dolly & Wen, Min-Ming, 2015. "Do joint ventures and strategic alliances create value for bondholders?," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 247-267.
    2. Parmeter, Christopher F., 2021. "Is it MOLS or COLS?," Efficiency Series Papers 2021/04, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    3. Badunenko, Oleg & D’Inverno, Giovanna & De Witte, Kristof, 2023. "On distinguishing the direct causal effect of an intervention from its efficiency-enhancing effects," European Journal of Operational Research, Elsevier, vol. 310(1), pages 432-447.
    4. Hung-pin Lai, 2015. "Maximum likelihood estimation of the stochastic frontier model with endogenous switching or sample selection," Journal of Productivity Analysis, Springer, vol. 43(1), pages 105-117, February.
    5. Efthymios G. Tsionas & Kien C. Tran & Panayotis G. Michaelides, 2019. "Bayesian inference in threshold stochastic frontier models," Empirical Economics, Springer, vol. 56(2), pages 399-422, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pavlos Almanidis, 2013. "Accounting for heterogeneous technologies in the banking industry: a time-varying stochastic frontier model with threshold effects," Journal of Productivity Analysis, Springer, vol. 39(2), pages 191-205, April.
    2. Yu, Ping & Phillips, Peter C.B., 2018. "Threshold regression with endogeneity," Journal of Econometrics, Elsevier, vol. 203(1), pages 50-68.
    3. Yélou, Clément & Larue, Bruno & Tran, Kien C., 2010. "Threshold effects in panel data stochastic frontier models of dairy production in Canada," Economic Modelling, Elsevier, vol. 27(3), pages 641-647, May.
    4. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    5. Camilla Mastromarco & Laura Serlenga & Yongcheol Shin, 2012. "Is Globalization Driving Efficiency? A Threshold Stochastic Frontier Panel Data Modeling Approach," Review of International Economics, Wiley Blackwell, vol. 20(3), pages 563-579, August.
    6. Strikholm, Birgit & Teräsvirta, Timo, 2005. "Determining the Number of Regimes in a Threshold Autoregressive Model Using Smooth Transition Autoregressions," SSE/EFI Working Paper Series in Economics and Finance 578, Stockholm School of Economics, revised 11 Feb 2005.
    7. Rod Falvey & Neil Foster & David Greenaway, 2009. "Trade, imitative ability and intellectual property rights," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 145(3), pages 373-404, October.
    8. Guastella, Giovanni & Moro, Daniele & Sckokai, Paolo & Veneziani, Mario, 2013. "Investment behaviour of EU arable crop farms in selected EU countries and the impact of policy reforms," Working papers 152083, Factor Markets, Centre for European Policy Studies.
    9. Gonzalo, Jesus & Pitarakis, Jean-Yves, 2002. "Estimation and model selection based inference in single and multiple threshold models," Journal of Econometrics, Elsevier, vol. 110(2), pages 319-352, October.
    10. Rothfelder, Mario & Boldea, Otilia, 2016. "Testing for a Threshold in Models with Endogenous Regressors," Other publications TiSEM 40ca581a-e228-49ae-911f-e, Tilburg University, School of Economics and Management.
    11. Dieter Nautz & Juliane Scharff, 2012. "Inflation and relative price variability in the euro area: evidence from a panel threshold model," Applied Economics, Taylor & Francis Journals, vol. 44(4), pages 449-460, February.
    12. Chong, Terence Tai Leung & Yan, Isabel K., 2014. "Estimating and Testing Threshold Regression Models with Multiple Threshold Variables," MPRA Paper 54732, University Library of Munich, Germany.
    13. Guastella, G. & Moro, D. & Sckokai, P. & Veneziani, M., 2013. "CAP Effects on Agricultural Investment Demand in Europe," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150619, Agricultural and Applied Economics Association.
    14. K Hervé Dakpo & Laure Latruffe & Yann Desjeux & Philippe Jeanneaux, 2022. "Modeling heterogeneous technologies in the presence of sample selection: The case of dairy farms and the adoption of agri‐environmental schemes in France," Agricultural Economics, International Association of Agricultural Economists, vol. 53(3), pages 422-438, May.
    15. Birgit Strikholm & Timo Teräsvirta, 2006. "A sequential procedure for determining the number of regimes in a threshold autoregressive model," Econometrics Journal, Royal Economic Society, vol. 9(3), pages 472-491, November.
    16. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    17. Pavlos Almanidis & Mustafa U. Karakaplan & Levent Kutlu, 2019. "A dynamic stochastic frontier model with threshold effects: U.S. bank size and efficiency," Journal of Productivity Analysis, Springer, vol. 52(1), pages 69-84, December.
    18. Hansen,B.E., 1999. "Testing for linearity," Working papers 7, Wisconsin Madison - Social Systems.
    19. Mohamed Chaffai & Patrick Plane, 2017. "Firm Productivity, Technology and Export Status, What Can We Learn from Egyptian Industries?," Working Papers 1134, Economic Research Forum, revised 09 Jun 2017.
    20. Chung‐Hua Shen & Hsing‐Hua Hsu, 2022. "The determinants of Asian banking crises—Application of the panel threshold logit model," International Review of Finance, International Review of Finance Ltd., vol. 22(1), pages 248-277, March.

    More about this item

    Keywords

    Stochastic frontier model; Endogeneity; Threshold; Panel data; Fixed effects; C24; C52; R3;
    All these keywords.

    JEL classification:

    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • R3 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:40:y:2013:i:2:p:227-237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.